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Abstract

Lithium aluminate (LiAlO2) is an insulating wide-band gap material currently

under development for tritium breeding and radiation detection and dosimetry appli-

cations. Point defects are imperfections in a crystal lattice localized over a few atomic

lengths that can alter the electrical, mechanical, or optical properties of materials.

An understanding of point defect behavior is a necessary precursor for optimizing

lithium aluminate for nuclear technology applications. This dissertation has iden-

tified and characterized the major point defects created and induced through x ray

and neutron radiation using electron paramagnetic resonance (EPR) and fluorescence

spectroscopies, thermoluminescence, and optical absorption. After x ray irradiation,

the major hole-trapping defect is found to be a hole trapped on an oxygen ion adja-

cent to a lithium vacancy. The major electron-trapping defect is found to be an Fe2+

ion substituting for a Li+ ion. During exposure to x rays, an O2− ion next to a lithium

vacancy will trap a hole, forming O−, and an Fe2+ ion on a lithium site will trap an

electron, forming Fe+. LiAlO2 diffused with copper has been found to have poten-

tial use as an optically stimulated luminescence (OSL) dosimeter. The OSL effect

arises from electron-hole recombination occurring at Cu2+ ions substituting for Li+

ions. The major intrinsic defect after neutron irradiation is an F+ center; an oxygen

vacancy with one trapped electron. This defect has two states, a stable state that

survives up to 500 ◦C and a metastable state that survives up to 200 ◦C. This disserta-

tion explains for the first time the mechanism responsible for OSL in copper-diffused

LiAlO2 and characterizes for the first time the intrinsic hole and electron-trapping

defects. These results should prove useful in LiAlO2 applications involving radiation.
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CHARACTERIZATION OF POINT DEFECTS IN LITHIUM

ALUMINATE (LiAlO2) SINGLE CRYSTALS

I. Introduction

1.1 Motivation

Lithium aluminate (LiAlO2) is an insulating material currently under development

by several researchers for various applications. The most important areas of focus are

its suitability as a substrate for GaN epitaxy because of a maximum ≈1.7% lattice

mismatch [1, 2], as a tritium breeding blanket for fusion reactors [3, 4], as a thermal

neutron scintillator material [5,6], and as a radiation dosimeter using optically stim-

ulated luminescence (OSL) [7–10]. Its application as a tritium breeding blanket, as

well as its applications in radiation detection and dosimetry, have important national

security considerations and are elaborated upon below.

1.1.1 Tritium Breeding Blanket.

Fusion power offers the promise of near limitless renewable energy and the United

States has spent billions of dollars on fusion research in trying to achieve fusion power

generation. A controlled fusion reactor attempts to harness the energy released in

the deuterium-tritium (D-T) reaction

2H + 3H → 4He (3.5MeV) + n (14.1MeV) (Q = 17.6MeV), (1.1)

where 2H is a hydrogen nucleus with one neutron known as deuterium, 3H is a hy-

drogen nucleus with two neutrons known as tritium, 4He is a helium nucleus that is

1



referred to as an alpha particle when it is created in nuclear reactions, n is a free

neutron, and Q, or Q value, represents the energy released per D-T reaction [11]. A

tritium breeding blanket is needed because it enables a fusion reactor to self-generate

its own supply of tritium from the neutrons emitted in equation (1.1). This is impor-

tant because the world supply of tritium is estimated to be around 20 kg [12] while

the initial startup tritium supply needed for each fusion reactor is estimated to be

23 kg [13]. By surrounding the fusion chamber with a ceramic blanket of lithium

aluminate, tritium can be generated when neutrons from equation (1.1) are absorbed

into the blanket and react with the two naturally occurring isotopes of lithium

6Li + n → 3H (2.75MeV) + 4He (2.05MeV) (Q = 4.80MeV) (1.2)

7Li + n → 3H+ 4He + n (Q = −2.467MeV). (1.3)

The 6Li neutron reaction can occur for thermal or higher energy neutrons. The 7Li

reaction only occurs for high-energy neutrons because it consumes energy, and its

neutron capture cross section is significantly smaller compared to 6Li for the neutron

energies that exist in the reactor. After tritium is created from either equation (1.2)

or (1.3), it can be extracted through isotopic exchange by running a helium sweep gas

with 0.1% hydrogen over the breeder blanket as discussed in [3]. 6Li comprises only

7.5% of natural lithium, so enriching lithium aluminate with 6Li during the crystal-

growth process will increase the tritium production for a given volume of LiAlO2.

1.1.2 Neutron Scintillator.

The threat of terrorists employing nuclear materials in an attack, either in a radi-

ological dirty bomb, or an improvised nuclear weapon, is of such concern to national

security that the Department of Homeland Security (DHS) has an entire office dedi-

cated to the detection of radiological and nuclear threats [14]. DTRA has developed

2



a direct relationship with the DHS Domestic Nuclear Detection Office in order to

achieve a multi-layered defense strategy to protect the U.S. from nuclear or radiolog-

ical attack. Crucial to that goal is the development of high-quality neutron detectors

since 235U and 239Pu, the two isotopes used to fuel nuclear weapons, both emit neu-

trons through spontaneous fission of their nuclei. LiAlO2 has shown the potential

for improved performance in thermal neutron detection over current detectors [5, 6].

LiAlO2 crystals are especially suited for neutron-detection applications because of the

presence of 6Li which has a large thermal neutron capture cross-section. Enriching the

crystals with 6Li during growth will increase their sensitivity for detecting neutrons.

The scintillation properties of an inorganic scintillator are determined by the elec-

tronic energy states that exist within the crystal lattice. In an insulator or semicon-

ductor there exist discrete bands of energy states that an electron can occupy known

as the valence band and conduction band. Electrons in the lower valence band are

essentially bound to the crystal lattice sites but electrons in the conduction band can

move freely about the crystal lattice. The energy that separates the top of the valence

band from the bottom of the conduction band is known as the band gap energy, and

is normally represented by Eg. If a photon with an energy equal to or greater than

the band gap energy is absorbed by an electron with initial energy E0 in the valence

band, that electron will be excited into the conduction band with a final energy Ef,

while leaving behind a hole in the normally filled valence band [15]. This process is

known as the creation of an electron-hole pair. An electron in the conduction band

will relax to the bottom of the conduction band, before emitting energy and returning

to the valence band in the process of electron-hole recombination [16]. When the pro-

cess of electron-hole recombination includes photon emission it is known as radiative

recombination as depicted in Figure 1.1.

In a pure crystal, the process of photon emission from electron-hole recombination
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Figure 1.1. An electron-hole pair is created when an electron in the valence band
absorbs a photon and is excited into the conduction band. E0 is the initial energy state
of the electron and Ef the final energy state. An electron will then relax to the bottom
of the conduction band and then return to the valence band through the emission of a
photon.

is not an efficient process, and typical band gap energies are so high that the energy

of the emitted photon would not be in the visible light range [17]. To circumvent

this problem, impurities are introduced into the pure crystal in a process known as

doping. These dopants have the effect of introducing energy levels within the normally

forbidden range of energies inside the band gap known as activator states. Electrons

excited to the conduction band in electron-hole pair creation can then non-radiatively

relax to these activator states. When these electrons de-excite to the ground state

of the activator levels, the photons they emit have an energy less than that of the

full band gap. These photons may be in the visible spectrum, if the correct dopant

is chosen, and can transmit through the crystal to a photodetector. The activator

sites are also known as luminescence centers or recombination centers, and their

energy structure within the crystal lattice will determine the emission spectrum of

the scintillator. Figure 1.2 shows how activators affect the energy levels and emission

of light.
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Figure 1.2. Adding impurities to a material introduces new energy levels within the
band gap. Electrons that de-excite from an activator excited state to a ground state
can emit light in the visible wavelength range.

As an energetic charged particle such as an electron or an alpha particle moves

through the scintillator medium, they will transfer their kinetic energy to electrons

in the valence band and create electron-hole pairs. Compounds like LiAlO2 can

serve as neutron scintillators because neutron-lithium reactions will create charged

particles, such as the alpha particle from equations (1.2) and (1.3), that will cause

light scintillation through the creation of electron-hole pairs and activator site photon

emission. Lithium is one of the elements frequently present in neutron scintillators

because its 6Li isotope has a relatively high neutron interaction probability, with a

neutron capture cross section of several hundred barns at thermal neutron energies.

As with the tritium breeding blanket, the neutron detector may be enriched to higher

concentrations of 6Li [18].

1.1.3 Dosimetry.

A personal dosimeter measures how much ionizing radiation a person has been

exposed to. This is critically important for people who regularly work with radioac-
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tive materials, and dosimeters are used by military personnel when they conduct

operations in a radiologically contaminated environment. The military has regula-

tions that govern the lifetime exposures of service members, and if these exposures

are met the service member would be permanently unable to serve in a radiological

environment. This is why it is very important that accurate and reliable dosime-

ters are available. There is existing research which indicates that LiAlO2 may hold

the promise of exceeding the performance of commercially available dosimeters for

mixed-field dosimetry (neutrons and gamma rays) [10].

A dosimeter is an integrating passive detector that works by trapping electrons and

holes at activator states within the band gap during exposure to ionizing radiation.

Unlike the neutron scintillator, however, where the electrons and holes immediately

recombine and emit light, the trapped charge in dosimeters will remain that way until

exposed to some form of stimulation that induces recombination. The number of

trapped charges created in ionizing radiation interactions is related to the absorbed

dose of incident radiation, and the population will continue to build up through

subsequent exposures until the trapped charges are released. The release of trapped

charge can occur through heat, in a process known as thermoluminescence (TL), or

through optical means, known as optically stimulated luminescence (OSL). While

the dosimeter material is being “read” or stimulated with heat or light, the trapped

charges are recombining and emitting photons, and the number of emitted photons

is proportional to the deposited energy integrated over the exposure time. This then

provides a measure of the radiation dose to which a dosimeter has been exposed.

Sections 2.4 and 2.5 elaborate further on the theory of these techniques.

6



1.2 Research Objectives

Most of the research on LiAlO2 has focused on its optical properties and bulk

physical properties such as its structural integrity [19] or thermal conductivity [20]

after neutron irradiation. Attempts to truly understand the behavior of lithium

aluminate on a fundamental level, through the study of point defects, have been very

limited. For any solid state device, point defects play an important role, sometimes

the most important role, in determining how that device will function. Point defects

are defined as imperfections in the lattice of crystalline solids that are localized over

a few atomic sites [21]. Figure 1.3 shows the four fundamental point defects. The

first three are considered intrinsic defects: antisite defects which occur whenever an

element of a compound occupies the wrong lattice site; interstitial defects which occur

whenever atoms occupy non-lattice sites; and vacancy defects which occur whenever

an atom is missing from its normal lattice position. The last point defect in Figure 1.3

is an extrinsic defect known as an impurity that occurs whenever a foreign atom has

entered the crystal lattice. More complicated point defect structures can be created

from combinations of the four shown in Figure 1.3.

Point defects are important because of the effects they can have on a given ma-

terial and any devices made from that material. The most well known example of

point defects altering material properties is semiconductor doping. When a semicon-

ductor is doped to make it p−type (holes are the dominant charge carrier) or n−type

(electrons are the dominant charge carrier), impurity ions are added to the crystal

lattice of the semiconductor which replace regular lattice ions, subsequently altering

the electrical properties. Point defects can change the optical properties of materials

as well; chlorine vacancies in KCl cause the normally colorless crystal to turn pur-

ple because they cause light in the 450−650 nm range to be absorbed (purple is the

primary color of the transmitted light) [22]. Point defects can also modify the me-
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Figure 1.3. Examples of the four fundamental point defects for crystalline solids are
shown above. More complicated point defects structures are created from combinations
of these four.

chanical properties of materials; point defect hardening occurs when point defects act

as obstacles to dislocation motion caused by stress, increasing a materials resistance

to plastic deformation [23].

An understanding of how point defects behave and the effects they cause in lithium

aluminate will be vital to optimizing device applications for this material. While there

have been many papers attempting to characterize the bulk properties of LiAlO2, only

three research papers since 1988 have attempted to understand point defect behavior

in single crystals of LiAlO2 [24–26]. In the present study, an examination of the point

defects induced in LiAlO2 by ionizing and non-ionizing radiation has been conducted

using electron paramagnetic resonance (EPR), thermoluminescence (TL), optical ab-

sorption, and fluorescence spectroscopy. EPR is particularly useful in identifying

paramagnetic defects and describing their environment. Ionizing radiation such as x

rays create electron-hole pairs in materials, and while this doesn’t normally create

point defects at typical x ray energies, it can make a non-paramagnetic defect para-

magnetic if it gains or loses an electron. This is necessary because EPR can only
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measure paramagnetic species. High-energy electrons not only create electron-hole

pairs but also have the possibility of inducing lattice ion displacements through colli-

sions. Neutron irradiation will primarily create lattice defects such as interstitials and

vacancies, but can also produce ionizing radiation effects through secondary reactions.

The theory underlying the experimental techniques is explained in Chapter 2.

Chapter 3 describes in detail the experimental equipment used in this study. Chapter

4 describes the characterization of the primary intrinsic point defect in as-grown

lithium aluminate crystals; a hole trapped near an oxygen ion that is adjacent to a

lithium vacancy. Chapter 5 describes the characterization of the primary extrinsic

point defect caused by iron impurities; an Fe2+ ion that has substituted for a Li+

ion. Chapter 6 describes the OSL mechanism in copper-diffused LiAlO2 crystals.

Chapter 7 describes the characterization of the point defects induced in LiAlO2 by

neutron irradiation, and Chapter 8 summarizes the key results and conclusions of this

dissertation. The following section will explain some basic properties of LiAlO2.

1.3 Properties of LiAlO2

LiAlO2 is an insulator that can be grown into three distinct crystal structures

which are referred to in the literature as α-phase, β-phase, and γ-phase [28]. α-LiAlO2

has a hexagonal structure where the cations have octahedral coordination. In this

structure each lithium and aluminum ion is surrounded by six oxygen ions. α-LiAlO2

also has the highest density of the three phases at 3.401 g cm−3 which makes it the

most stable of the phases at high pressure [29]. β-LiAlO2 has an orthorhombic crystal

structure and the aluminum ions have both tetrahedral and octahedral coordination

with the oxygen ions. Tetrahedral coordination has each lithium and aluminum ion

surrounded by four oxygen ions. β-LiAlO2 has a density of 2.61 g cm−3 and can be

converted to the γ-phase by heating to 900 ◦C [30, 31].
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Figure 1.4. A 3D representation of the unit cell of γ-LiAlO2 viewed from an arbitrary
direction. The green spheres represent lithium, the violet are aluminum, and the red
spheres are oxygen. The labels of the ions correspond to the coordinates given in Table
1.2. This was drawn using Diamond v. 3.0 software [27].

γ-LiAlO2 is the most commonly occurring phase and the one used in the various

applications that have been discussed previously. This phase will be the focus of the

current study and all subsequent references to LiAlO2 in this study are to the γ-phase.

The Hermman-Maugiun symbol for γ-LiAlO2 is P41212 with space group number

92 [32]. This is a tetragonal crystal structure with cell dimensions a = 5.1687 Å and

c = 6.2697 Å, a calculated density of 2.615 g cm−3, and with each cation tetrahedrally

coordinated with the oxygen ions [33]. The tetrahedral coordination can be looked

at in one of two ways. It can be visualized as each oxygen ion forming the vertices of

lithium and aluminum centered tetrahedra, or conversely, the aluminum and lithium

ions can be thought of as forming the vertices of oxygen centered tetrahedra. The
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Table 1.1. Anion - Cation Bond Lengths

Bond Bond Length (Å)
O(7) - Li(2) 2.059
O(7) - Li(3) 1.948
O(7) - Al(1) 1.755
O(7) - Al(2) 1.767

Figure 1.5. A 3D representation of the LiAlO2 crystal structure drawn using Diamond
v. 3.0 software [27]. The green spheres represent lithium, the violet are aluminum, and
the small red spheres are oxygen. (a) The unit cell viewed from the [100] direction.
(b) The unit cell viewed from the [001] direction.

crystal structure is then built upon an infinite three dimensional array of tetrahedra

that have certain edges and vertices in common. Symmetry operations are a four-

fold rotation about the [001] direction, twofold rotations about the [100] and [010]

directions, and a twofold rotation about the [110] direction.

Figure 1.4 is a 3D representation of the LiAlO2 crystal structure viewed from an

arbitrary direction with all of the ions in a unit cell visible. Each ion is equivalent to

every other ion of the same element but the lithium and aluminum ions that surround

each oxygen are not equivalent relative to the oxygen. The differences in the bond

lengths are shown in Table 1.1.

Figure 1.5 shows the crystal structure of lithium aluminate from two different

viewing directions. The figure shows how the tetrahedra are distorted from normal
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Table 1.2. LiAlO2 Unit Cell Ion Coordinates in Angstroms [34]

Ion x y z
Li (1) 4.200 4.200 0.000
Li (2) 3.553 1.616 1.567
Li (3) 0.969 0.969 3.134
Li (4) 1.616 3.553 4.701
Al (1) 0.909 0.909 0.000
Al (2) 1.675 3.494 1.567
Al (3) 4.260 4.260 4.292
Al (4) 3.494 1.675 4.701
O (1) 1.741 1.502 4.841
O (2) 1.082 4.326 0.140
O (3) 3.427 3.667 1.707
O (4) 4.086 0.843 3.274
O (5) 4.326 1.082 6.128
O (6) 0.843 4.086 2.994
O (7) 1.502 1.741 1.427
O (8) 3.667 3.427 4.561

because the structure has to accommodate metallic ions of different sizes. The Li and

Al ions occupy the Wyckoff special position of 4a(x,x,0) while the O ions occupy the

general position of 8b(x,y,z) [35]. The coordinates of every ion in a unit cell is given

in Table 1.2 and each unit cell contains four formula units.

The undoped crystal is colorless and transparent from 200 to 2500 nm with a

191 nm absorption edge and estimated band gap of 6.5 eV [36]. γ-LiAlO2 has the

highest melting point of all three phases at 1700±20 ◦C [37], although lithium begins

to evaporate from solid lithium aluminate at 900 ◦C [38].
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II. Theoretical Foundation

2.1 Electron Paramagnetic Resonance (EPR)

An electron has an inherent angular momentum known as spin that is repre-

sented by the spin angular momentum operator Ŝ [39]. It is analogous to the angular

momentum that would be generated classically if a sphere were rotating about its

central axis, however, it is not identical to any classical angular momentum because

an electron is a point particle with no internal structure and spin is solely quantum

mechanical in origin. The electron also has a spin-induced magnetic moment related

to the spin by

µ̂ = γŜ = −g
q

2me

Ŝ [J T−1], (2.1)

where γ is the gyromagnetic ratio which relates angular momentum to magnetic

moment, g is a dimensionless number known as the Zeeman splitting factor or g

factor, q is the electronic charge, and me is the electronic mass. The negative sign

in equation (2.1) implies that the direction of the magnetic moment is anti-parallel

to the direction of the spin. A classical analogue to the electron magnetic moment

would be the magnetic moment that arises from a current i that flows through a loop

of wire in the x−y plane having a radius r and area A. The loop of wire then behaves

as a point magnetic dipole with a moment normal to the plane of the loop with a

magnitude of iA, where i = qv/2πr and A = πr2. If we now think of the current as

a particle with mass m and charge q moving around the loop with speed v, we then

have for the magnetic moment

µz = iA = ±
qv

2πr
πr2 = ±

q

2m
mvr =

q

2m
Lz, (2.2)
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where Lz would be the orbital angular momentum of the particle about the z-axis [40].

The choice of sign depends on the direction of rotation of the particle. In equation

(2.2), g = 1, but for the free electron in equation (2.1)

ge = 2.0023. (2.3)

The value of the g factor for an electron in a material depends on the relative contri-

butions from the orbital angular momentum L̂ of the electron, which arises from its

motion about a nucleus, and the spin Ŝ of the electron, to the electron’s total angular

momentum [41].

Figure 2.1. Energy of a classical magnetic dipole in a static magnetic field B as a
function of the angle θ between the magnetic field and the axis of the dipole: (a) mini-
mum energy configuration; (b) arbitrary value of θ; (c) maximum energy configuration.
Adapted from [42].

The electron’s magnetic moment means that the electron can be treated as a

magnetic dipole when subjected to an external static magnetic field B as shown in
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Figure 2.1. The energy of this interaction is given by

E = −µ̂ ·B [J] (2.4)

= − |µ̂|B cos θ (2.5)

= −µ̂zB, (2.6)

where µ̂z is the z-axis component of µ̂ andB is along the z-axis. Substituting equation

(2.1) into equation (2.4) results in

E = g
q

2me

ŜzB (2.7)

= g
q~

2me

mSB (2.8)

= gµBmSB, (2.9)

where Ŝz represents the z-axis component of Ŝ with eigenvalue ~mS, mS is the spin

magnetic quantum number,

µB =
q~

2me

(2.10)

is the Bohr magneton, and ~ is Planck’s constant reduced. mS can assume values that

range from S to −S in increments of one where S is the spin quantum number. S can

assume any half-integer or integer value including zero. For an electron, S = 1/2 [43].

Unlike the classical magnetic dipole depicted in Figure 2.1 which can assume all

angles with respect to B between 0 and 180◦, the spin angular momentum and thus

the magnetic moment, can only assume discrete directions with respect to B as shown

in Figure 2.2. The magnitude squared of the spin vector in Figure 2.2 is

Ŝ2 = ~
2 [S(S + 1)] [J2 · s2] (2.11)
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Figure 2.2. The allowed orientations of the spin angular momentum vector with respect
to a static magnetic field parallel to the z-axis for (a) S = 1/2, (b) S = 1, (c) S = 3/2. Ŝ2

is the magnitude squared of the spin vector. Adapted from [44].

and the magnetic quantum number mS determines the magnitude of its component

along the B field direction. The quantization of spin direction leads to the quantiza-

tion of the energy levels of a quantum magnetic dipole as shown in Figure 2.3 for an

S = 1/2 system.

In Figure 2.3, the electron can only assume an energy of

E = ±gµB

B

2
(2.12)

depending on the value of mS and the difference between the two energy levels is

∆E = gµBB. (2.13)

The energy levels in Figure 2.3 are known as electron Zeeman energy levels and
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Figure 2.3. The energy levels for a single unpaired electron with S = 1/2 as a function
of applied magnetic field B. This is sometimes referred to as the electron Zeeman
energies [45].

electron paramagnetic resonance (EPR) spectroscopy arises from the fact that an

oscillating electromagnetic field B1, can induce an unpaired electron in an external

static magnetic field to transition between electron Zeeman levels if certain conditions

are met. B1 must be perpendicular to the static magnetic field B, and it must have

an appropriate frequency ν such that the photon energy is equal to ∆E. For most

EPR spectrometers including the one used in this study, microwave energies are used

with ν ≈ 9.4GHz. EPR spectrometers that operate at this microwave frequency

are known as “X-band” spectrometers, but other spectrometers operating at lower or

higher frequencies do exist [46]. If these conditions are met then the electron can be

induced to transition from mS = +1/2 to mS = −1/2 or vice versa. The relationship

between the energy of a photon and ∆E is

∆E = hν = gµBB, (2.14)

where h = 2π~. ∆E is called the resonance energy and equation (2.14) is known as
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the resonance condition [47]. In theory, the resonance condition could be achieved in

two equivalent ways. B could be held fixed as one varied the frequency of the incident

radiation until absorption occurs, or alternatively, the frequency of the incident radi-

ation could be held fixed while B is varied. Most EPR spectrometers use this latter

approach because it is more difficult to vary ν, however, this also places limitations

on the EPR transitions that can be measured because it is difficult to create a static

magnetic field much greater than 1.3T.

An EPR spectrometer fundamentally measures the absorption of incident elec-

tromagnetic energy by a paramagnetic sample. Figure 2.4(a) shows a representative

Magnetic Field

(a)

(b)

Absorption Curve

First Derivative

Figure 2.4. (a) A representative microwave absorption spectrum, (b) first derivative of
an absorption spectrum.

example of a microwave absorption spectrum. A 100 kHz modulation of the static

B field is employed to improve the sensitivity of the spectrometer. This results in

the EPR lines appearing as the first derivatives of the absorption spectrum and is

what is normally observed in the output of an EPR spectrometer as shown in Figure

2.4(b) [48]. Some paramagnetic species have more than one unpaired electron, such

as the transition-metal ions, where the total spin is often greater than 1/2. In such

a situation there will be more than one EPR transition, and the number of EPR
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transitions or first derivatives observed by the spectrometer is 2S.

2.2 The Spin Hamiltonian

If an electron had only the electron Zeeman interaction, all EPR spectra would

look like Figure 2.4(b). In reality, there are several interactions an electron is sub-

jected to in a crystal lattice that can change the EPR spectrum, such as splitting of

the EPR lines or changes in the expected g value. The solution of the Schrödinger

equation that takes into account all of the interactions between a single unpaired elec-

tron and its external environment, as well as its internal interactions from phenomena

such as its spin-orbit coupling, is far too complicated to be generally applicable to

EPR [49]. In order to simplify analysis of paramagnetic systems studied with EPR,

the concept of the spin Hamiltonian was introduced to describe the behavior of an

unpaired electron in a crystalline environment using only electron and nuclear spin

operators and parameters. This is useful because these parameters can be measured

using EPR without knowing the true wave function of the defect system. The spin

Hamiltonian is given by

H = HEZ +HFS +HHF +HNZ +HQ [J] (2.15)

HEZ = µBŜ · g ·B electron Zeeman interaction (2.16)

HFS = Ŝ ·D · Ŝ fine-structure interaction (2.17)

HHF = Ŝ ·A · Î hyperfine interaction (2.18)

HNZ = gnµnÎ ·B nuclear Zeeman interaction (2.19)

HQ = Î ·Q · Î nuclear quadrupole interaction (2.20)

where D is the fine structure matrix, A is the hyperfine matrix, Î is the nuclear spin

operator, gn is the nuclear g factor, µn is the nuclear magneton, and Q is the nuclear
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electric quadrupole matrix. In equation (2.16), g is a matrix because the EPR spectra

of many defects exhibit angular anisotropy in their g value. Paramagnetic defects

having all three principal g values (eigenvalues) the same are known as isotropic

defects.

2.2.1 Fine-Structure Interaction.

Fine-structure splitting arises for paramagnetic defects with S > 1/2. The fine-

structure interaction comes about because of the influence of the crystal electric field

on the electron spin through the spin-orbit interaction and through the magnetic

dipole-dipole interaction between unpaired electrons [50]. The effects of fine-structure

splitting on the energy levels of an unpaired electron with S = 1 are demonstrated in

Figure 2.5. Figure 2.5 shows that even at zero B field, the energy levels are split by

Figure 2.5. Simplified example of fine-structure splitting for a point defect with an
unpaired electron with S = 1, isotropic g factor, D axially symmetric along its z-axis,
and B along the fine structure matrix z-axis. D is the fine-structure splitting constant
derived from the principal values of D. This approximation is valid to first order when
HEZ ≫ HFS.

an amount D, the fine-structure splitting constant. This effect is known as “zero-field

splitting” [51].
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2.2.2 Nuclear Zeeman Interaction.

Everything that has been said for the behavior of an unpaired electron in a mag-

netic field also applies to an unpaired nucleus with nuclear spin I > 0. This results

in a nuclear Zeeman splitting of the nuclear energy levels in the same way as for

the electron. However, the frequency associated with ∆E is on the order of MHz

instead of GHz in similar magnetic fields since the magnetic moment of a nucleus is

proportional to µn, and µn ≈ µB/1836. Therefore, ∆E in equation 2.13 will be on

the order of 1800 times smaller for a nucleus than for an electron.

2.2.3 Hyperfine Interaction.

The hyperfine interaction is the magnetic interaction between the magnetic mo-

ment of an unpaired electron and the magnetic moment of its central nucleus. For

every Zeeman energy level an electron has in a magnetic field, the nucleus can assume

any of its nuclear Zeeman levels. This results in a splitting of the electron Zeeman

energy levels whenever the central nucleus has I > 0, as shown in Figure 2.6. In

Figure 2.6, the single EPR transition that occurs when no hyperfine interaction is

present has been split into three lines of equal intensity separated by a distance a0,

where a0 is the hyperfine splitting constant. The number of hyperfine lines that are

created is

2I + 1, (2.21)

and the selection rules for hyperfine transitions are

∆mS = ±1,∆mI = 0, (2.22)

where mI is the nuclear magnetic quantum number. The sum of the intensities of the

hyperfine-split EPR lines will equal the intensity of a single EPR transition with no
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Figure 2.6. Energy level scheme of the deuterium atom with S = 1/2 and I = 1 at
fixed B. a0 is the hyperfine splitting constant and is the distance between the adjacent
colored EPR transitions in magnetic field units.

hyperfine splitting.

2.2.4 Nuclear Quadrupole Interaction.

The nuclear quadrupole interaction occurs for many nuclei with I > 1/2 and

it characterizes the electric charge distribution in the nucleus. It is generally not

relevant for EPR transitions but can play a role in electron-nuclear double resonance

(ENDOR) [52].

2.3 Optical Absorption

Optical absorption in this dissertation refers to the absorption of light by a solid

having wavelengths between the ultraviolet and the infrared. This light absorption

is caused by the transition of a bound electron from its ground state energy level to

an excited state and is analogous to the microwave absorption in EPR but occurs at
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significantly higher energies. The present study will be primarily concerned with three

types of absorption phenomena: intracenter absorption associated with transition-

metal impurities in ionic crystals, absorption due to charge-transfer processes between

transition-metals and oxygen ions, and absorption caused by anion vacancies known

as F+ centers [53].

Transition-metal ions refer to those elements in the periodic table that have par-

tially filled 3d shells. In the context of dopants or impurities, this will most often

mean those ionized elements between scandium and zinc in row four of the periodic

table, and less often those in row five. For a free ion, all of the electron 3d shell

orbitals are degenerate, but when placed in a crystalline environment, the degeneracy

of the d levels is lifted. This arises due to the fact that the positive transition-metal

cation will be surrounded by negative anions in an ionic crystal that produce an elec-

tric field at the cation site, causing a perturbation of the energy levels known as the

static crystal-field effect (same as the Stark effect for a free atom [54]). Figure 2.7

Figure 2.7. An example of the crystal-field effect for a Cu2+ ion in an tetrahedral
environment. The five degenerate 3d levels of the free ion are split into a doublet state
labeled 2Eg and a triplet state labeled 2T2g. A hole in the triplet state can absorb a
photon and move to the doublet state.
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shows what happens to the energy levels of Cu2+ which has a 3d9 electronic config-

uration, in a tetrahedral crystal environment where it is surrounded by four anions.

The five degenerate 3d levels are now split into a triplet ground state 2T2g, and a

doublet excited state 2Eg [55]. The superscript prefix refers to the spin multiplicity,

and the letter subscript refers to the parity (g for gerade, the German word for even.

u for ungerade or odd parity states). This configuration can be treated as a filled 3d

shell with one hole [56]. The hole can move into the excited state after a photon is

absorbed by the spin system. This type of transition is known as a d → d transition

because the unpaired spin begins and ends in a d orbital. The energy level scheme

will become more complicated if there are more unpaired d electrons or the anion

coordination is changed.

There will also be an additional perturbation from the surrounding anions being

displaced from their equilibrium positions, which alters the electric field experienced

by the transition-metal cation. This is called the dynamic crystal-field effect and is

produced by vibrations of the crystal lattice which couple to the electronic energy

levels through electron-phonon interactions. Figure 2.8 depicts how the electron en-

ergy levels are affected by electron-phonon coupling. The discrete energy levels E1

and E2 now are comprised of a continuum of phonon modes that form vibrational

bands. Each mode is separated from the previous mode by an energy ~Ω, where Ω

is the phonon angular frequency. The absorption of a photon by an electron in the

ground state of E1 moves the electron into an excited state and creates one or more

phonons. Energy conservation requires that

~ωa = (E2 + n~Ω2)− E1 = (E2 − E1) + n~Ω2, (2.23)

where ~ωa is the energy of the absorbed photon and n is an integer [58]. Equa-

tion (2.23) shows that the range of absorption energies is from (E2 − E1) up to the
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Figure 2.8. Electron-phonon coupling has the effect of turning the discrete energy levels
into vibrational bands. n′ and n are integers and Ω represents the phonon frequency.
Adapted from [57].

maximum phonon energy allowed.

The description of the Cu2+ energy levels just described relied on static crystal field

theory where the d orbitals were perturbed by the surrounding electric field, but did

not interact with the anion orbitals. In reality, crystal field theory has been shown to

be inadequate at predicting the correct energies for some measured absorption bands

and has had to be modified with molecular orbital theory [59]. Molecular orbital

theory predicts that the d orbitals of the transition-metal ion and the p orbitals of

the oxygen ions mix and form new molecular orbitals. The formation of molecular

orbitals permits an electron to move from an oxygen ion to a transition-metal ion that

has excess charge for its lattice site. This is called a charge transfer transition and

these transitions usually occur at greater energies and have intensities hundreds or

thousands of times greater than d → d transitions [60]. The reason for this is because

selection rules make d → d transitions forbidden in the free ion, but these rules are
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broken when the ion is placed in a crystal field environment. The transition becomes

allowed, but the probability is still low compared to the charge transfer transitions.

Anion vacancies in ionic crystals act as lattice sites deficient in negative charge

that can trap one or more electrons. A neutral anion vacancy is called an F center,

an anion vacancy with one unpaired electron is called an F+ center. An electron

trapped at an anion vacancy is in a bound state with energy levels characteristic of

the particle in a box in the most simple model [61]. The energy levels for a trapped

electron in a box with sides of length a are

Enxnynz
=

~
2π2

2mea2
[

n2
x + n2

y + n2
z

]

[J], (2.24)

where nx, ny, and nz are integer only quantum numbers that specify the electronic

states. All of the quantum numbers are equal to 1 for the ground state. For the

first excited state, one of the quantum numbers must be equal to 2 while the others

remain at 1. The lowest energy transition that corresponds to an absorption band is

given by

E211 − E111 =
3~2π2

2mea2
. (2.25)

The energy levels of F+ centers are also affected by crystal vibrations which displace

neighboring ions from their equilibrium position thus altering the size of the box. This

in turn alters the energy in equation (2.24) and turns the energy levels into vibronic

bands just as for the transition-metal impurity. Figure 2.9 provides an example of

what an absorption spectrum looks like using the F2 center (two adjacent oxygen

vacancies with four trapped electrons) in neutron-irradiated MgO.

Macroscopically, the absorption of light propagating in the z direction through a
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Figure 2.9. Example absorption curve from neutron-irradiated MgO. The 3.5 eV peak
is due to two adjacent oxygen vacancies each with two trapped electrons, known as a
neutral divacancy or F2 center [62]. This spectrum was obtained at AFIT using a MgO
crystal neutron irradiated in 1968.

medium is expressed in the form of Beer’s Law as

I(z) = I0e
−αz [W m−2], (2.26)

where I(z) is the intensity of light at position z, I0 is the incident intensity at z =

0, and α is the absorption coefficient [63]. The absorption coefficient is directly

proportional to the concentration of absorbing species, so Beer’s Law says that the

fraction of power absorbed in a unit length of a sample is directly proportional to the

concentration of absorbing species.

2.4 Thermoluminescence (TL)

The basic mechanisms behind thermoluminescence (TL) are similar to scintillation

in that luminescence occurs from electron-hole recombination. Scintillation specifi-
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cally refers to light emission that happens instantaneously upon excitation, which is

also defined as fluorescence. In thermoluminescence, light emission occurs only upon

heating the irradiated material above the irradiation temperature [64, 65]. Heating

is required because the electrons and holes are trapped at energy levels within the

band gap and require a sufficient thermal energy before they can be released from the

energy level trap. These energy levels that trap electrons and holes can be the acti-

vator levels introduced by impurities, but they can also be energy levels from other

types of point defects. Different types of point defects will create electron or hole

traps that will have energy levels specific to the defect, and the traps can maintain

trapped charge for times ranging from days to years when held below the critical re-

lease temperature. A simplified energy level scheme that depicts the basic processes

in thermoluminescence is shown in Figure 2.10.

Figure 2.10. Simplified one trap-one recombination energy band model showing the
electronic transitions in a TL material. (a) Electron-hole generation, (b) electron and
hole trapping, (c) release of trapped electrons by heating, (d) and recombination. Solid
circles are electrons and open circles are holes. R is for recombination, Eg is the band
gap energy, E is the depth of the trap, and EF is the Fermi level. Adapted from [66].

For simplicity, Figure 2.10 only assumes one electron trap and one recombination

center (hole trap). The electron trap is situated near the bottom of the conduction
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band and the recombination center is near the top of the valence band. EF represents

the Fermi level and E the energy required to free an electron from the trap, known

as the trap depth or activation energy. When the TL material is subject to ionizing

radiation, represented as transition a in the figure, an electron is excited into the

conduction band leaving behind a hole in the valence band. The electrons and holes

will move through their respective bands until they become trapped at their respective

trapping sites, represented by transition b. The F+ center is an example of an electron

trap [67], and a cation vacancy would be a hole trap [68].

The trapped electrons and holes will remain at their trap locations until they have

enough energy to leave the traps. The probability p, per unit time, that a trapped

charge will escape the trap is given by the Arrhenius equation [65]

p = s · exp

(

−
E

kBT

)

[s−1], (2.27)

where E is the activation energy in eV, kB is Boltzmann’s constant, T is the tem-

perature, and s is the frequency factor in s−1, which describes the number of “hits”

against the potential wall the electron makes per second in trying to escape. If

E/kB ≫ T0, where T0 is the temperature at irradiation, then electrons and holes will

remain trapped for a long time after irradiation has ceased. Charges trapped in this

manner can remain trapped for years, and is the reason why electron and hole traps

are frequently referred to as metastable states.

Now if the TL material is subjected to increasing temperature, T will eventually

approach and then exceed E/kB, supplying enough energy to the trapped electrons

to overcome the energy barrier of the traps, as shown in transition c. The released

electron will migrate through the conduction band until it it recombines with a hole

at the recombination site shown with transition d. In this simple model, the recombi-

nation center is a luminescent center in an excited state, which then emits light as it
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returns to the ground state. The number of traps released by increasing temperature

is directly proportional to the amount of light emitted from recombination, therefore

the emitted light provides a direct measurement of the amount of radiation dose. If

the intensity of the emitted light is plotted against temperature, a plot known as a

glow curve will be produced as shown in Figure 2.11.
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Figure 2.11. Example glow curve from silver-doped lithium tetraborate (Li2B4O7) that
has been irradiated with x-rays.

It may seem from Figure 2.11 that the temperature where the TL peak occurs,

Tm, is related to the activation energy by

Tm = E/kB (2.28)

but this is not the case! Equation 2.27 is a simplified model that ignores other im-

portant processes occurring at the same time. The electron can be retrapped again
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before recombination, there can be more than one electron trap or hole trap at dif-

ferent depths within the band gap, or the electron can radiatively or non-radiatively

recombine in the valence band. Figure 2.10 shows electrons being released and re-

combining at the hole trap, but recombination can also occur from released holes

recombining at trapped electron sites. Finally, the position of Tm depends on the

heating rate β at which the TL peak is obtained and s [69]. All of these factors

combine to give complex relationships between β, Tm, E and s and are important to

remember when attempting to interpret thermoluminescence glow curves.

2.5 Optically Stimulated Luminescence (OSL)

OSL dosimetry is very closely related to thermoluminescence dosimetry. OSL

relies on similar types of ionizing radiation, trapping, and radiative recombination

processes that are involved in TL . The materials involved are wide-band-gap, crys-

talline insulators that have had appropriate defect energy levels introduced into the

band gap by impurities. For both OSL and TL materials, electrons and holes be-

come trapped at defect sites through ionizing radiation where they can be stable for

years [70]. The same electron-hole recombination scheme depicted in Figure 2.10 ap-

plies to both TL and OSL. The difference between TL and OSL is in how the trapped

charge is stimulated to recombine. For thermoluminescence, the material is heated

in order to stimulate recombination, for OSL, excitation light is used. In Figure 2.10,

transition c would now be due to OSL stimulation light instead of heat. It is im-

portant to point out, however, that materials optimal for TL may not be the same

materials optimal for OSL. For example, LiF:Mg,Ti thermoluminescent dosimeters

can detect radiation doses on the order of µGy but the minimum measurable dose

for observation of OSL in LiF:Mg,Ti has been found to be on the order of 1Gy [71].

This would seem to indicate, but remains unclear, that the same defect centers are
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not involved in both processes for any one material [72].

For OSL, the key parameter is the rate of optical stimulation given by

p = σφ [s−1], (2.29)

where σ is the photoionization cross section (in cm2) for the trapping centers and φ is

the intensity of the stimulating light (in photons

cm2s
). OSL is generally produced using a

constant stimulation intensity. The resulting signal is referred to as continuous-wave-

OSL or CW-OSL, and it takes the form of an exponential-like luminescence decay

curve. Assuming the ideal case of one trapping center and one luminescent center,

the decay curve is best represented as

I = I0 · exp (−pt) [W m−2], (2.30)

where I is the OSL intensity and I0 is the initial intensity at time t = 0. The time scale

over which the OSL signal decays as charge traps are continuously emptied depends

on both the material and the exciting light intensity. In most materials there will be

multiple trapping and luminescent centers which usually results in non-exponential

decay.

Some OSL processes don’t involve ionization of the trapped charge as shown in

Figure 2.10, but rather excitation of the trapped charge to a higher energy state within

the trap. The excited electron then falls back to the ground state of the trap and

emits OSL light. This procedure has the added advantage over TL in that multiple

readings of the dose could be carried out [72]. The fact that the dose information is

read using optical techniques instead of heating the material is in itself an advantage

because it is generally less destructive to the luminescent material.
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III. Instrumentation

3.1 The EPR Spectrometer: An Overview

Figure 3.1. Block diagram of an EPR spectrometer. Reprinted with permission from
[73].

Figure 3.1 shows a generalized block diagram of an EPR spectrometer. Any EPR

spectrometer at the most basic level consists of a source of electromagnetic radiation,

a chamber for holding the sample, a static magnetic field, and a detector. In Figure

3.1, the microwave bridge is the radiation source, the sample sits in a cavity called

a resonator, the block labeled “Signal Channel” contains electronics that enhance

the sensitivity of the spectrometer through a technique known as phase sensitive

detection, and the block labeled “Field Controller” controls the magnetic field. A

Bruker EMX EPR spectrometer was used in this dissertation. The function of each

major component is explained below.
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3.1.1 Microwave Bridge.

Figure 3.2. Block diagram of a microwave bridge. Reprinted with permission from [73].

Figure 3.2 depicts a simplified block diagram of the microwave bridge. Point A is

the source, which generates the microwave electromagnetic radiation. The microwave

source is normally a Gunn diode [74, 75]. As the microwave energy leaves the source

and is directed to the cavity, it first passes through an attenuator at point B, which

allows precise and accurate control of the microwave power that is incident on the

sample by absorbing a portion of the microwave radiation. After passing through

point B the microwave radiation enters the circulator at point C. The circulator

allows the microwave energy to enter through port 1, travel towards the sample cavity

through port 2, and then directs the reflected microwave energy from the sample to

travel out through port 3 towards the detector instead of traveling back towards the
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attenuator and the source. A portion of the microwave power also travels through

the reference arm at point F as it leaves the source and ultimately combines with the

reflected microwave energy from the sample cavity. The microwave energy through

the reference arm serves as a bias on the detector diode, which is why it passes through

an attenuator that allows the microwave power to be varied. There is also a phase

shifter in the reference arm which ensures the reference microwaves and the reflected

microwaves are in phase when they recombine. The most common detector is a

Schottky barrier diode [76] operating in the linear region that converts the microwave

power to an electrical current that will result in an EPR spectrum after processing

in the signal channel.

3.1.2 EPR Cavity.

The EPR cavity is a metal box, usually rectangular but sometimes cylindrical,

that has appropriate dimensions such that microwaves will resonate when they enter

the cavity. This means that the microwaves will form standing waves within the

cavity when critically coupled and no microwaves will be reflected back, but will

remain inside the cavity. For the rectangular cavity, the dimensions are on the order

of one-half the wavelength of the microwaves. The resonant frequency is the unique

size-dependent frequency that allows the microwaves to resonate within a given cavity.

A measure of the effectiveness of resonant cavities is given by their Q factor, or quality

factor, which characterizes how efficiently the cavity stores microwave energy. The Q

factor is defined as the energy stored divided by the energy dissipated per microwave

period and is usually expressed as

Q =
νres
∆ν

, (3.1)
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where νres is the resonant frequency and ∆ν is the full width at half max of the

resonance power.

Standing electromagnetic waves have their electric and magnetic field components

exactly out of phase, so the electric field is at a maximum when the magnetic field

is at a minimum and vice versa. Figure 3.3 depicts an example of the standing

Figure 3.3. The magnetic and electric field patterns in a standard rectangular EPR
cavity. Reprinted with permission from [73].

wave patterns for a rectangular cavity. As shown in the figure, the sample stack,

which holds the sample, is positioned at maximum magnetic field and minimum

electric field. This positioning serves two purposes; the non-resonant absorption of

the microwaves caused by the electric field which degrades Q will be minimized,

and the EPR absorption that is driven by the microwave magnetic field B1 will be

maximized. EPR cavities with this optimum sample positioning provide the largest

EPR signals and the highest sensitivities.

The microwaves travel towards the cavity through a metal waveguide designed

to minimizes losses through its walls. The microwaves in the waveguide are then

impedance matched to the cavity via a hole called an iris as depicted in Figure 3.4.

The size of the iris controls the amount of microwaves reflected back and allowed

to enter the cavity. This is done by means of a metal-tipped Teflon screw called

an iris screw, and when no microwaves are reflected back, the microwaves in the
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waveguide and the cavity are considered to be “critically coupled”. The cavities are

designed such that the electromagnetic wave magnetic field B1 is perpendicular to

the external magnetic field B. It is the field B1, oscillating at νres, which induces the

EPR transitions between the Zeeman energy levels. When the sample absorbs the

microwave energy, the Q is lowered due to increased losses and the waveguide and

cavity are no longer impedance matched. The loss of critical coupling means that

microwaves will be reflected back along the waveguide towards the microwave bridge

and into the detector giving rise to an EPR signal.

Figure 3.4. The microwaves in the waveguide and the cavity are impedance matched
to eliminate reflections. This process is referred to as “critically coupling”. Reprinted
with permission from [73].

3.1.3 Signal Channel.

The signal channel contains electronics for enhancing the sensitivity of the spec-

trometer. The usual technique is to employ a lock-in amplifier, also known as a phase

sensitive detector. This provides the advantages of eliminating most of the noise con-

tributing components and amplifying the EPR signal. A 100 kHz small amplitude
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modulation of the static magnetic field (Bmod) is superimposed over B. This field

modulation sweeps through part of the absorption signal and the microwaves reflected

from the cavity are amplitude modulated at the same frequency. The absorption sig-

nal will be transformed into a sine wave with an amplitude proportional to the slope

of the absorption signal, if the absorption signal is approximately linear through the

modulation amplitude range. The phase sensitive detector has a reference signal with

the same frequency and phase as the modulation field. It combines the reference

signal and the EPR signal and creates a DC current proportional to the amplitude

of the modulated EPR signal. Any signals with different frequencies and phases will

be eliminated from the DC current. Since the output polarity of the modulated EPR

signal from the phase-sensitive detector is proportional to the slope of the absorption

signal, the modulated EPR signal appears as the first derivative of the absorption

signal. This is shown in Figure 3.5.

The modulation field is produced by a pair of Helmholtz coils embedded in the

walls of the microwave cavity. The choice of 100 kHz for the modulation frequency

is the result of a tradeoff between minimizing the “1/f noise” at the detector diode,

and maximizing the penetration of the modulation field through the inter-wall of the

cavity (i.e., the skin-depth problem) [78]. Thus, this modulation field is critical in

eliminating noise in the spectra, and enhancing the EPR signal through application

of lock-in amplifier techniques.

For the EPR spectrometer used in this dissertation the minimum number of un-

paired spins that can be detected at 10K is approximately 5× 1010 cm−3. Using this

as a sensitivity reference, the concentration of unpaired spins in a sample can be

estimated from the EPR signal using [79]

(

5× 1010
)

(∆B)2
(

S

N

)

(L)

(

T

10

)

(

V −1
)

[cm−3], (3.2)
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Figure 3.5. Effect of small-amplitude 100 KHz field modulation on the detector output
current. The static external magnetic field B is modulated between the limits Ba and
Bb while the detector current will vary between ia and ib. Reprinted with permission
from [77].

where ∆B is the horizontal line-width in Gauss between the maximum and minimum

peak of the first derivative in the EPR spectrum, (S/N) is the signal to noise ratio, L

is the number of hyperfine lines, T is the temperature in Kelvin, and V is the sample

volume in cm−3.

3.2 Spectrophotometer

Figure 3.6 shows a simplified block diagram of the spectrophotometer used to

make optical absorption measurements in this dissertation. In order to measure the
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Figure 3.6. Block diagram of a double beam scanning spectrophotometer. The diagram
shows the basic principles of the Cary 5000 UV-VIS-NIR spectrophotometer used in
this dissertation.

absorption of light from the ultraviolet (UV), through the visible (VIS), and to the

near infrared (NIR), more than one light source is needed. For the UV light source,

typically a deuterium (D2) arc lamp is used because it emits a continuous spectrum of

wavelengths from 180 to 400 nm [80]. For wavelengths from about 350 nm to the NIR,

an incandescent light source such as a tungsten-halogen lamp is commonly used. Since

the light rays from the source are spherically diverging when emitted, a collimator

is used to create parallel rays. When the parallel light rays strike the diffraction

grating, light rays with different wavelengths will reflect from the diffraction grating

at different angles. As shown in Figure 3.6, a beam of light is split into the various

wavelengths of visible light after striking the grating, but only one beam of light

representing one wavelength is allowed to pass through the slit. The grating can

rotate which allows each wavelength of light to be projected through the slit. By

rotating the diffraction grating and changing the light source, all wavelengths from

40



the UV to the NIR can be passed through the slit. This process is normally referred

to as “scanning” and for the Cary-5000 unit used in this dissertation, the scanning

range is from 175− 3300 nm

Once the single wavelength beam passes through the slit, it is incident on a beam

splitter, which splits the beam into a reflected reference beam and an un-reflected

sample beam. After passing through the sample, the sample beam is attenuated due to

the absorption of light by the sample, while the reference beam remains unattenuated.

The sample beam and the reference beam are measured by a detector and converted

into an electrical signal. Absorption is quantified in terms of the absorbance, or

optical density, defined as [81]

O.D. = − log10

(

I(z)

I0

)

, (3.3)

where I(z) is the intensity of the sample beam after being attenuated by the sample,

and I0 is the intensity of light before passing through the sample, or the intensity of

the reference beam. The optical density is related to the absorption coefficient from

equation (2.26) by

O.D. = −log10
(

e−αz
)

= 0.434αz. (3.4)

3.3 Thermoluminescence Dosimeter Reader

Figure 3.7 displays a block diagram of the type of instrument used to measure

thermoluminescence. The sample rests on a resistive heating element connected to a

power supply. When the sample is heated, light emitted from the sample is directed

into the photomultiplier tube (PMT). Light that enters the PMT creates electrons

at the photocathode, which then leave the photocathode and are accelerated and

multiplied across the dynodes, collected at the anode, and then converted into a
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Figure 3.7. Block diagram of a thermoluminescence dosimeter reader. A Harshaw 3500
TLD Reader was used to measure thermoluminescence in this dissertation.

current [82]. This current is amplified and then measured. The measured current

will be proportional to the amount of light emitted by the sample which in turn is

proportional to the amount of radiation absorbed by the sample. Although a PMT

can be operated with either a positive or negative high-voltage, a negative high-

voltage at the cathode with the anode grounded has the advantage that generated

signals can be directly sent to low-voltage measuring electronics. The PMT is housed

in an enclosure that shields it from ambient light as this can cause damage to the

PMT through over-excitation of the photocathode. An optical filter is also placed

between the PMT and the sample to reduce the intensity of incident light on the

PMT.
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3.4 Spectrofluorometer

Figure 3.8 depicts a simplified block diagram of a fluorescence spectrometer, known

as a spectrofluorometer. This device is used to find the excitation and emission wave-

lengths for a material. Electrons absorb photons and are excited into the conduction

band or an excited state as discussed in Sections 1.1 and 2.3, through the process of

optical excitation. Electrons recombine with holes and emit light through the pro-

cess of optical emission. For a spectrofluorometer, the excitation light is generated

by a xenon lamp that emits a continuous range of light from the ultraviolet to the

near-infrared. The xenon lamp is used because it is more efficient than the tungsten-

halogen lamp in the Cary-5000 at emitting intense UV light, which isn’t necessary

for absorption measurements but required to observe luminescence in some materials.

The light enters the excitation monochromator, which operates in a manner simi-

lar to the diffraction grating discussed in Section 3.2, selecting single wavelengths of

light from the spectrum. In this manner the spectrofluorometer can scan an entire

range of wavelengths similarly to the optical absorption spectrophotometer, how-

ever, the Fluorolog-3 spectrofluorometer used in this dissertation can only scan from

200− 800 nm because of limitations imposed by the PMT.

When excitation light of the appropriate wavelength interacts with the sample, the

sample will begin to fluoresce, emitting light from the excited electrons de-exciting

to the ground state. The light emitted from the sample will enter the emission

monochromator, which can allow single wavelengths of light to pass through and

enter the photomultiplier tube. The output from the spectrofluorometer is intensity

or PMT counts per second versus wavelength.

The Fluorolog has three modes that were used in this dissertation. The first mode

is the emission scanning mode, where the excitation light is fixed at one wavelength

and the emission monochromator can scan anywhere in the 200− 800 nm range. If a
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Figure 3.8. Block diagram of a fluorescence spectrometer. A Fluorolog-3 by Horiba
Scientific was used to measure excitation and emission in this dissertation.

sample has emission in this range, then the measured intensity will start to increase,

reach a peak, and then decrease as the monochromator moves through the emission

wavelength range. The resulting intensity versus wavelength plot is known as an

emission or photoluminescence (PL) peak. The excitation mode does the inverse of the

emission mode, the emission monochromator is held at a fixed monitoring wavelength,

and the excitation monochromator is scanned anywhere in the 200−800 nm range. As

the excitation monochromator approaches the ideal wavelength that induces electrons

in a sample to excite to higher levels and emit light at the monitored wavelength,

the emission intensity will begin to increase. The emission intensity will reach a

plateau as the ideal excitation wavelength is reached, and then start to decrease as

the excitation monochromator passes through the ideal excitation wavelength. The

resulting intensity versus wavelength plot is a photoluminescence excitation (PLE)

peak. The third mode used to obtain data is the kinetics mode, where the excitation

and emission monochromators are held at fixed wavelengths, and the emission is
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monitored as a function of time. Emission can be time dependent if the excitation light

causes charge-trapping defects to release their charges over time. In that situation,

the emission light would start off at its most intense, and then become weaker with

time. This mode is how OSL was measured in this dissertation.
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IV. Characterization of the Intrinsic Hole Center in LiAlO2

4.1 Introduction

When developing a material for radiation-detector applications, it is important to

identify all of the primary intrinsic and extrinsic point defects that may be present.

In LiAlO2, and also in other light-emitting materials, point defects may serve as

transient or long-lived electron and hole traps and have a major effect on any device

performance. Some defects may provide efficient radiative recombination pathways

that enhance emission, a desirable outcome, while other defects may introduce non-

radiative recombination pathways that limit the amount of emitted light. The thermal

stability of these electrically and optically active traps are also important for device

operation. Electron paramagnetic resonance, optical absorption, and luminescence

experiments are often combined to provide a comprehensive approach to identification

and characterization of point defects in non-metallic crystals.

In this chapter, an optical and magnetic resonance study of the effects of ionizing

radiation on commercially available single crystals of LiAlO2 is described. An intense

11-line EPR spectrum is created when a crystal is irradiated at room temperature

with x rays. Auvray-Gely et al. first reported this S = 1/2 spectrum with multiple

hyperfine lines in 1988, but the responsible defect was not identified at the time [24].

This EPR spectrum was produced in recently grown LiAlO2 samples and is identified

for the first time as a hole trapped at an oxygen ion adjacent to a lithium vacancy. In

general, a trapped-hole defect of this type is an example of an acceptor-bound small

polaron in an oxide crystal [83]. Correlation of the thermoluminescence glow curve

with an anneal of the EPR signal reveals that the trapped holes become thermally

unstable at 105 ◦C, are released and migrate to the trapped electrons where radiative

recombination occurs.
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4.2 Electron Paramagnetic Resonance Results

For this study, undoped lithium aluminate samples obtained from the MTI Cor-

poration in Richmond, CA were used [84]. They were grown by the Czochralski

technique. Several samples were purchased as 10mm × 10mm × 0.5mm substrates,

that had either c or a-plate orientations, and were subsequently cut into EPR sized

samples. An as-grown LiAlO2 crystal has essentially no paramagnetic defects. At ap-

proximately 5K some very weak EPR signals became visible close to the free electron

g value that are most likely due to impurities. These signals were not further investi-

gated. After irradiating a sample with x rays generated with 60 kV and 30mA for 1

minute, an EPR spectrum was obtained with the B field parallel to the [001] direction

(parallel to the c-axis) that contained eleven equally spaced hyperfine lines separated

by 0.87mT, with average linewidths of 0.41mT and centered around 332mT, as

shown in Figure 4.1. The number of spins represented by the spectrum in Figure

4.1 was estimated to be 4.3 × 1017 cm−3 from equation (3.2), where the S used is

the intensity of one of the outermost lines, and L = 36. The number 36 comes

from the fact that the relative intensity of the lines are represented by the sequence

1:2:3:4:5:6:5:4:3:2:1, with 36 being the sum of the relative intensities. Since there are

eleven hyperfine lines in Figure 4.1, this indicates from equation (2.21) the hyperfine

pattern is from either an I = 5 nucleus or nuclei that effectively act as an I = 5

nuclei. The 1:2:3:4:5:6:5:4:3:2:1 intensity ratios of the hyperfine lines, shown by the

upper red stick diagram in Figure 4.1, indicate the spectrum is the result of two

equivalent I = 5/2 nuclei. If the hyperfine pattern were caused by a single I = 5

nucleus, the spectrum would have 11 lines of equal intensity as the example in Figure

2.6(b) illustrates for an I = 1 nucleus.

There are only two I = 5/2 nuclei in LiAlO2 in sufficient quantity that could

create the 11-line spectrum; 27Al and 17O. 17O is 2600 times less abundant than 16O,
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Figure 4.1. Eleven line hyperfine spectrum of LiAlO2 after irradiation with x rays
with B parallel to [001]. The frequency is 9.401GHz and the temperature is 30K. This
pattern is obtained from an unpaired electron having an interaction with two equivalent
27Al nuclei. The red stick figure represents the ratio of the peak intensities.

the isotope that comprises 99% of natural oxygen. Since 16O is an I = 0 nucleus,

this means that if the 11-line spectrum were caused by 17O, there would be a single

EPR line from the electron interacting with 16O that would be superimposed over

the 11-line spectrum and 2600 times more intense. Since this is not observed, the

only conclusion left is that the eleven line spectrum in Figure 4.1 is generated by an

electron interacting with two equivalent 27Al ions.

Figure 4.2 shows the EPR spectra for the magnetic field along the [110] and [100]

directions. Two sets of EPR signals can clearly be resolved for each direction of the

crystal. The fact that there are two 11-line EPR signals for these directions is in

keeping with the tetragonal crystal symmetry. This can be understood as follows: if

48



Figure 4.2. Hyperfine spectra of LiAlO2 after irradiation with x rays at 30K and with a
frequency of 9.401GHz. The inequivalence of the defect sites are resolved for different
orientations of the crystal. (a) The magnetic field is along the [110] direction. (b) The
magnetic field is along the [100] direction.

we represent the defect as a randomly oriented vector in the crystal-axes coordinate

system, then from the symmetry of the crystal the vector will have eight orientations

(sites) in the crystal, one in each +[001] quadrant and one in each −[001] quadrant.

If the external static magnetic field is along [001], then all eight vectors will make the

same angle with respect to the magnetic field, making them magnetically equivalent;

this means the EPR signal from each orientation of the defect will be the same. This

is what is observed in Figure 4.1, where all orientations of the defect are magnetically

equivalent yielding the one 11-line EPR signal. If the magnetic field is along the [100]
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or [110] direction, then the vectors in the ±[001] second and fourth quadrants will

be magnetically equivalent, and the vectors in the ±[001] first and third quadrants

will be magnetically equivalent. This will create two 11-line EPR signals that are

each quadruply degenerate; i.e., each signal represents four identical orientations.

The reason why the low-magnetic-field set of lines in Figure 4.2(b) are distorted is

because the hyperfine interaction matrices between the defect and each of the two

closest aluminum nuclei are inequivalent for this direction of magnetic field.

Figure 4.3. Hyperfine spectra of LiAlO2 after irradiation with x rays at 30K and with a
frequency of 9.401GHz. There are three inequivalent defect sites with resolved spectra
for this orientation of the crystal. The magnetic field is along the [101] direction.

In Figure 4.3 we can see the EPR spectrum with the magnetic field along the [101]

direction, i.e., the midpoint between the c and a axes in the c− a plane. Along this

direction, three sets of 11-line signals are clearly resolved. From the intensities of the

signals, the highest field 11-line signal represents four sites while the two lower field

signals represent two sites each. Three distinct 11-line signals were the most that

could be resolved for the magnetic field orientations that could be easily obtained
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with the spectrometer.

When an EPR signal has hyperfine lines that arise from more than one nucleus

it is known as superhyperfine and it is caused by an additional splitting of the first

hyperfine energy levels by subsequent nuclei [85]. Figure 4.4 shows the energy level

splitting caused by the superhyperfine interaction of an S = 1/2 electron and two

27Al I = 5/2 nuclei. Figure 4.5 shows the final set of energy levels that result from

the superhyperfine splitting of the Zeeman levels.

Figure 4.4. Energy level diagram for an S = 1/2 electron interacting with two equivalent
27Al nuclei with I = 5/2.

First the Zeeman effect lifts the degeneracy of the electron spin energy levels into
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Figure 4.5. The final EPR energy levels and their degeneracies after the superhyperfine
splitting. The colored arrows represent equivalent EPR transitions in a fixed frequency
EPR spectrometer with scanning B field. The degeneracies of the energy levels creates
the symmetry of the 11-line EPR spectrum shown in Figure 4.1.

ms = ±1/2, with ms = +1/2 indicating the z component of the electron spin is

parallel with B. The magnetic moment of the electron is anti-parallel to its spin,

therefore ms = +1/2 is at a higher energy because its magnetic moment is anti-

parallel to B (the magnetic moment parallel to B being the state of lowest energy).

The hyperfine interaction with the first 27Al splits each Zeeman level into the six levels

labeled mI(1). The magnetic moment and the spin of positive nuclei are parallel, so

mI(1) = +5/2 in Figure 4.4 implies the spin and magnetic moment are parallel to B.

For ms = +1/2 and mI(1) = +5/2, we would have the electron magnetic moment
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pointing in the opposite direction as B, while the 27Al magnetic moment points

in the same direction as B and opposite the electron magnetic moment, making

mI(1) = +5/2 the highest energy state relative to the electron ms = +1/2 level. The

second 27Al then splits each of the first six hyperfine levels into six more superhyperfine

levels labeled with mI(2). The scheme we use to identify a particular level then

becomes

E(ms, mI(1), mI(2)),

Many of the levels are degenerate such as E(+1/2, +5/2/, +3/2) and E(+1/2, +3/2,

+5/2), so the final count of energy levels are eleven each for ms = +1/2 and ms =

−1/2, which results in eleven EPR transitions with intensities that correspond to the

degeneracy of the levels as seen in Figure 4.1.

4.3 Spin Hamiltonian Analysis

The spin Hamiltonian that describes the EPR spectra from the 11-line trapped

hole center in LiAlO2 is given by

H = µBŜ · g ·B+ Ŝ ·A1 · Î1 + Ŝ ·A2 · Î2 − gnµnÎ1 ·B− gnµnÎ2 ·B, (4.1)

where the subscripts refer to the two 27Al nuclei that give rise to the resolved hyperfine

patterns observed in the EPR spectra. In this dissertation only the g matrix in the

Zeeman term is determined. An objective of future work would be to determine

the hyperfine matrices A1 and A2 as well as a hyperfine matrix for the neighboring

lithium ion.

The g matrix describes the orientation of the defect relative to the crystal axes

and it can be obtained from the EPR spectra by rotating a sample through various

planes. In the defect coordinate system the g matrix is diagonal and is usually
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expressed as [86]

g =













gx 0 0

0 gy 0

0 0 gz













(4.2)

In order to calculate the g matrix, magnetic field values corresponding to the centers

of the aluminum-split hyperfine lines at different orientations of B were collected from

the EPR spectra, along with their corresponding microwave frequencies, and used as

input data for a least-squares fitting program in MATLAB similar to the one used

in [87]. The data used is shown in Table 4.1.

Table 4.1. Magnetic field values used in a least-squares fitting program to determine
the g matrix of the trapped-hole center.

Direction of B B (mT)
[001] 331.795

[101]
325.839
332.993
334.893

[100]
327.214
334.624

[110]
329.116
332.629

During the fitting routine, the 2 × 2 spin Hamiltonian matrix (S = 1/2) from

equation (2.16) was repeatedly diagonalized as the parameters of the g matrix were

systematically varied. Initially two sets of parameters were found that gave good fits

to the data. In order to determine which set of parameters were correct, another

set of magnetic field input values was obtained with B halfway between the [001]

and [110] directions. The final set of g matrix parameters, the principal values and

principal directions, are displayed in Table 4.2. The Euler angles which describe the

directions of the principal axes with respect to the crystal coordinate system have been
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Table 4.2. g matrix parameters for the trapped-hole center in LiAlO2 crystals. Esti-
mated error limits are ±0.0006 for the principal values and ±2◦ for the angles.

Principal Value Principal-Axis Direction (θ, φ)

gx 2.0130 (39.2◦, 302.6◦)
gy 2.0675 (61.3◦, 74.8◦)
gz 2.0015 (65.8◦, 179.1◦)

converted into (θ,φ) pairs. θ is the polar angle defined relative to the [001] direction

and φ is the azimuthal angle relative to the [100] direction. The values given in Table

4.2 correspond to one of the eight crystallographically equivalent orientations of the

trapped-hole center in LiAlO2. The directions for the other seven can be obtained by

applying the symmetry operations of the crystal to the values in Table 4.2. Figure

4.6 illustrates the angular dependence of the 11-line spectrum that was computer

generated using the parameters in Table 4.2. Each line in the figure corresponds
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Figure 4.6. Angular dependence of the g matrix for the trapped-hole center in LiAlO2.
Midpoints of the 27Al hyperfine spectra are plotted as a function of magnetic field
direction for the three high symmetry planes in the crystal. The microwave frequency
is 9.401 GHz and the red circles are the data points from Table 4.1.

to the center of an 11-line hyperfine pattern and one of the eight crystallographic

orientations. Only four lines are shown for each rotation because the +[001] quadrant
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sites are pairwise degenerate with the -[001] quadrant sites.

4.4 Trapped-Hole Center Discussion

Lithium vacancies are present during growth and are created as charge compen-

sators for transition-metal impurities such as iron. Under ionizing radiation, as elec-

trons and holes move through the crystal, the holes can become trapped on doubly

negative oxygen ions if one of the adjacent cations is missing or has been replaced by

an impurity cation deficient in charge. This is a known and documented phenomena

in many simple oxides such as MgO [68], Al2O3 [88], SiO2 [89] and ZnO [90]. A more

recent example in a ternary oxide is lithium tetraborate (Li2B4O7), where a hole

becomes trapped on an oxygen ion adjacent to a lithium vacancy and has an equal

hyperfine interaction with two neighboring I = 3/2 boron neighbors that generates a

seven line EPR spectrum [91].

The trapped hole in LiAlO2 is stabilized by the lithium vacancy and the hole-

lattice coupling favors the hole remaining trapped at one oxygen ion instead of spread

out among several. This trapped hole localized on an oxygen ion creates an O− small

bound polaron [83]. Analysis of the g matrix anisotropy and the resolved hyperfine

lines support this model of an acceptor bound polaron as will be shown in the following

discussion.

O− is a 2P state ion (L = 1, S = 1/2) with an electronic configuration given

by (1s22s22p2x2p
2
y2pz). In the free ion these orbitals are all degenerate but under

the influence of the crystal electric field the degeneracy is broken into three discrete

energy levels E1, E2, and E3. E1 represents the ground state energy with the hole in

the pz orbital while E2 and E3 represent the hole occupying the py and px orbitals

respectively. Spin-orbit interactions mix the excited states with the ground state

causing a change in the effective g factor. To first order, the principal values can be
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represented by [92]

gx = ge −
2λ

E3 −E1

, gy = ge −
2λ

E2 − E1

, gz = ge = 2.0023, (4.3)

where λ is the spin-orbit coupling constant. Section 4.5 expounds upon the signif-

icance of the energy denominators in equation (4.3) as they relate to the trapped

hole.

Figure 4.7. Model of one of the eight possible orientations of the trapped-hole center
in LiAlO2. The labels from Table 1.2 and Figure 1.4 have been used.

As shown in Table 4.2, gz is very close to the free electron value differing by only

0.04%. According to Bartram et al [93], λ for an O− ion is −135 cm−1, which would

cause positive g shifts from the free electron value for gx and gy, exactly as observed in

Table 4.2. The principal values in Table 4.2 conform to theory for a hole trapped on

an oxygen ion. The principal-axis directions were used to determine the orientation

of the trapped hole with respect to the crystal axes and the result is shown in Figure
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4.7.

In Figure 4.7 we have a trapped hole localized on O(7), with Al(1) and Al(2) being

the closest aluminum neighbors and Li(2) and Li(3) the closest lithium neighbors.

The orbital containing the hole, pz, is oriented nearly perpendicular to the Al(1)-

O(7)-Al(2) plane because this allows the hole to minimize to the greatest extent

possible its interaction energy with the surrounding cations. px (not shown) is in the

Al(1)-O(7)-Al(2) plane and perpendicular to pz. py (not shown) is nearly parallel to

a line from Al(1) to Al(2) and perpendicular to pz and px. These crystallographic

directions relative to O(7) are given in (θ, φ) pairs in Table 4.3. Comparing the

Table 4.3. Crystallographic directions associated with the trapped hole on the oxygen-
centered tetrahedron shown in Figure 4.7. These directions pass through the oxygen
ion and form a right-hand coordinate system that can be compared to the g matrix
principal-axis directions in Table 4.2. The labels are consistent with Table 1.2 and
Figures 1.4 and 4.7.

Direction (θ,φ)

px
In the Al(1)-O(7)-Al(2) plane

perpendicular to the Al(1)-Al(2) line
(37.8◦,295.0◦)

py Along the Al(1)-Al(2) line (59.8◦,73.5◦)

pz Normal to the Al(1)-O(7)-Al(2) plane (69.5◦,176.1◦)

principal directions given in Table 4.2 with those in Table 4.3 shows extremely good

agreement with px, py, and pz corresponding to gx, gy, and gz. Some disagreement

with the g-values is to be expected as the angles associated with the p-orbitals were

calculated without taking into account the relaxation of the crystal lattice that would

occur with a missing lithium ion. The g matrix parameters in Table 4.2 and the

directions in Table 4.3 validate the model of a trapped hole on an oxygen as shown in

Figure 4.7. Since the trapped-hole center can be induced with room temperature x

ray irradiation, the defect is stable at room temperature which is consistent with the

hole being immediately adjacent to the lithium vacancy (An O−with no immediately
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adjacent lithium vacancy is more likely to see the hole hop to other oxygen ions and

ultimately recombine). Because pz is at an angle of 28.3◦ with the O(7)-Li(2) direction

and an angle of 52.9◦ with the O(7)-Li(3) direction, the lobe of the pz orbital is closest

to Li(2). From a minimization of electrostatic energy standpoint, Li(2) must contain

the lithium vacancy.

4.5 Optical Absorption Results

There has been a significant amount of research conducted on the optical prop-

erties of LiAlO2 in the undoped state [6–8, 94, 95], as well as doped with Cr [26], Cr

co-doped with Mg [96], Cu [6], Fe [97–99], Mn [100, 101], Ce and Tb [100], Eu [102],

and Ti [5]. Unlike with EPR, optical studies alone cannot reveal any information

about what type of defect may be contributing to the observed optical effects. In

conjunction with EPR however, optical measurements can be a very useful tool in

understanding the fundamental properties of a material.

The optical absorption spectrum of the 0.5mm thick sample used to obtain the

EPR spectra in this chapter was measured before and after ten minutes of irradiation

with 60 kV, 30mA x rays at room temperature. Figure 4.8 shows the absorption

spectra before and after irradiation, and the difference between the two. The crystal

had both of its faces polished and was mounted in the spectrometer such that light

propagated along the [001] direction. The data has been corrected for reflective losses

using [103]

α =
1

z log10(e)
[O.D. + 2 log10(1−R)] [cm−1], (4.4)

where z is the sample thickness and assumed to be much larger than the coherence

length of the transmitted light, R is the reflectivity, e is Euler’s number, and 2 log10(1−
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Figure 4.8. Optical absorption spectra from LiAlO2 taken at room temperature with
unpolarized light propagating along the [001] direction. (a) Before x ray irradiation.
(b) After irradiation with x rays generated with 60kV at 30mA. (c) Difference between
the before and after spectra, also known as a radiation-induced spectrum.

R) is the term that accounts for reflective losses. The reflectivity is given by

R =

(

n− 1

n+ 1

)2

, (4.5)

where n is the index of refraction. Ideally, one would need the values of the index of

refraction for every wavelength in the region measured. However, only seven values

of the refractive indices of LiAlO2 within the 460 − 660 nm region have been pub-

lished [37]. Since wavelength dependent corrections could not be made, the ordinary

refractive index of 1.6345 at 460 nm as reported in [37] was applied across the entire

200 − 800 nm measurement range in Figure 4.8. Since the index of refraction has

an inverse relationship with wavelength in what is known as dispersion [104], there
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will be an upward trend at wavelengths shorter than 460 nm in Figure 4.8 due to the

increasing refractive index that will remain uncorrected. This makes it difficult to

determine if any low-intensity broad ultraviolet absorption bands are present in the

as-grown crystal.

As shown in Figure 4.8, x rays produce broad overlapping absorption bands in the

visible and ultraviolet regions with peaks appearing near 3.27, 4.46, and 5.87 eV (379,

278, and 211 nm, respectively). These peaks are most likely charge-transfer bands

associated with transition-metal impurities unintentionally introduced during crystal

growth. In several x ray irradiated lithium aluminate samples, EPR signals from Cr3+

have been observed [26], and it will be shown in Chapter 5 that Fe2+ acts as a major

electron trap in this material. Absorption bands associated with these transition-

metal impurity charge states should be associated with the EPR signals, and it is

established in Chapter 6 that the 379 nm peak is related to the Fe+ charge state. In

order to establish precisely which absorption bands correlate with which impurities

will require several samples doped with different concentrations of transition-metal

ions utilized in a combined optical and EPR study. Such samples are unavailable for

this dissertation, but could be a focus of future research.

Returning to equation (4.3), the denominators represent transitions between the

energy levels or p orbitals of the O− ion. The values of these transitions allow a pre-

diction of where optical absorption peaks might be expected to appear. Substituting

the g values from Table 4.2 and λ = −135 cm−1 for the spin-orbit coupling constant

into equation (4.3) gives

E3 −E1 = 25324 cm−1 or 396 nm (4.6)

E2 −E1 = 4141 cm−1 or 2.41µm. (4.7)

Equation (4.6) indicates that we can expect an absorption band near 396 nm, which
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is close to the observed band near 379 nm in Figure 4.8. However, during a thermal

annealing experiment, the EPR signal in Figure 4.1 was seen to decay away while the

379 nm absorption band remained. The absorption bands from a small bound polaron

should be wide and lie in the visible range or close to it, but the values of the E3−E1

and E2 − E1 crystal field excitations may not be good predictors of the positions of

the absorption bands according to Schirmer [83, 105]. In the crystal field model, the

ground state of our trapped-hole center has the hole localized on only one oxygen ion,

and excitations involve transitions to higher excited states on the same oxygen ion.

These are intra-polaron transitions, but as Schirmer explains, small bound polaron

absorption often involves inter-polaron transitions, where the hole moves from the

O− to one or more of the surrounding O2− ions. These inter-polaron charge-transfer

transitions would have different absorption band positions and oscillator strengths

than that predicted by the crystal field splitting model. In any event, even if the

precise location of the absorption bands due to the trapped-hole was known, it’s

possible they still wouldn’t be visible due to the broad charge-transfer absorption

bands from the transition-metal impurities.

An intense optical absorption band centered near 5.25 eV (236 nm) has been re-

ported in LiAlO2 irradiated with 2MeV He+ ions and 2.5MeV electrons [25, 94] and

10 keV deuterons (D+
2 ) [106]. Both groups speculate this band is due to oxygen

vacancies (i.e., F+ centers) formed by knock-on damage from high-energy charged

particles. The absence of this absorption band in Figure 4.8 suggests that as-grown

LiAlO2 crystals do not contain any significant concentrations of oxygen vacancies.

4.6 Thermoluminescence Results

The radiation-induced trapped-hole center was further characterized by measuring

its thermal stability during isochronal thermal annealing experiments. The sample
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Figure 4.9. Comparison of thermoluminescence data (blue curve) and EPR thermal
anneal data (red curve). These results indicate that the 11-line EPR trapped-hole
center directly participates in the 105 ◦C peak.

was first annealed at 400 ◦C for 15 minutes in a bench-top furnace to remove the ef-

fects of previous radiation exposures. The sample was then irradiated for 10 minutes

at room temperature with 60 kV, 30mA generated x rays and placed inside the mi-

crowave cavity where an EPR spectrum was taken at 30K. The sample was placed in

the furnace again where it was annealed for 25 s at 70 ◦C, after which it was put back

into the microwave cavity and another EPR spectrum taken at 30K. This procedure

was repeated at 90 ◦C with a 25 s holding time and continued in 20 ◦C increments

until the 11-line EPR signal monitored at 30K was completely gone. The signal in-

tensity was monitored by measuring the vertical distance between the turning points

of the center line in Figure 4.1. The equivalent constant heating rate from this proce-

dure was approximately 0.80 ◦C/s. After the EPR annealing data were obtained, the
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sample was again initially heated to 400 ◦C for 15 minutes and then irradiated for 10

minutes at room temperatures with x rays. A TL glow curve was obtained from the

sample using the Harshaw 3500 taken with a constant heating rate of 1 ◦C. Figure 4.9

shows the EPR thermal anneal data along with the thermoluminescence glow curve.

Figure 4.9 shows that there is one intense peak near 105 ◦C and three smaller peaks

near 138, 176, and 278 ◦C. The peak near 105 ◦C clearly coincides with the thermal

decay of the 11-line EPR signal and provides the first explanation for what causes

this first order glow peak. Previous research groups had reported a TL glow peak

near 100 ◦C but did not identify the defects responsible [7,9]. Other EPR signals were

also measured during this thermal annealing experiment, specifically those believed

to arise from transition-metal ions. These signals decay throughout the 90 to 300 ◦C

region but unlike the trapped-hole center, none of the monitored signals lost 100%

of their radiation-induced intensities in a single step near 105 ◦C. This would seem

to indicate that it is the trapped-hole that becomes unstable and is released near

105 ◦C. Upon release, the holes migrate though the crystal and recombination occurs

at one or more of the trapped-electron sites (i.e., transition-metal-ion impurities that

trapped an electron during the initial irradiation at room temperature). In order to

make definitive assignments on the nature of the recombination sites associated with

the 105 ◦C TL peak in LiAlO2, more information about the emitted light such as

spectral dependence and lifetimes are needed.
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V. Characterization of an Extrinsic Electron Center in
LiAlO2

5.1 Introduction

In the previous chapter the major hole trap in LiAlO2 single crystals was described

and characterized. Since the net charge in a solid must always be zero, whenever there

is a trapped-hole, there must also be a compensating trapped-electron in the crystal.

The point defect that acts as the primary electron trap is caused by iron impurities

that are inadvertently introduced into the crystal during growth. Fe2+ ions replace

Li+ ions in the as-grown crystal, and trap electrons under ionizing radiation thereby

converting to the Fe+ charge state. In this chapter the primary electron trap caused

by iron impurities is characterized and analyzed (primary is defined in terms of largest

relative signal intensity).

5.2 Electron Paramagnetic Resonance Results

As stated in the previous chapter there are essentially no EPR signals in an as-

grown lithium aluminate crystal except for very weak signals visible at low tempera-

tures. After irradiation with 60 kV 30mA generated x rays, along with the appearance

of the 11-line trapped-hole center, several weak single line EPR signals can also be

seen at 30K with B along [001]. Figures 5.1(a) and (b) show EPR spectra taken at

30 and 13K after x ray irradiation using a 3mm × 5mm × 0.5mm sample.

In Figure 5.1(a) the 11-line spectrum is clearly present along with small single line

EPR signals. These are the only signals visible along the entire measurable magnetic

field range of 1.3T. If the temperature is raised from 30K, all of the signals visible

in Figure 5.1(a) are reduced and eventually only a few very weak peaks from the

11-line signal are visible at room temperature. Figure 5.1(b) is a spectrum of the
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Figure 5.1. 0.3T wide EPR spectrum of a LiAlO2 single crystal recorded after x ray
irradiation. The frequency is 9.401GHz and the magnetic field is along the [001] direc-
tion. (a) At 30K the 11-line trapped-hole spectrum discussed in Chapter 4 is the only
significant EPR signal. (b) At 13K the 11-line signal has disappeared due to spin-lattice
relaxation effects and a single EPR line at 141.5mT has become visible.

same crystal, at the same orientation, and over the same magnetic field sweep but

at 13K. The EPR line at 141.5mT, labeled Center A, begins to be visible below

20K. The 11-line signal and the other weak EPR signals are no longer visible at this

temperature but some new weak signals have appeared. The 11-line signal disappears

and Center A appears at lower temperatures due to spin-lattice relaxation effects.

If Nu and Nl represent the occupancy numbers of an upper and lower Zeeman

level, respectively, then a thermodynamic parameter known as the spin temperature
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Ts can be defined as

Nu

Nl

= exp

(

−
∆U

kBTs

)

, (5.1)

where ∆U represents the energy difference per spin [107]. Although electrons and

protons obey Fermi-Dirac statistics, Maxwell-Boltzmann statistics can be used to

first order as long as the interaction between spins is sufficiently weak. However, the

interaction between spins must be strong enough to maintain thermal equilibrium

within the spin system or Ts will have no meaning. In general, there will be more

spins in the lower energy state than in the upper energy state. When a photon is

absorbed that possesses an energy ∆U , a spin will gain sufficient energy to move from

Nl to Nu. Since the spin system has gained energy, it can be considered at a higher

temperature than its surroundings, and this is the meaning of the spin temperature.

The spin system will interact with its surroundings and lose energy until Ts equals

the temperature of the surroundings T .

The energy absorbed will decay exponentially according to

δU = δU0exp

(

−
t− t0
τ1

)

, (5.2)

where δU0 is the excess energy at time t = t0, and τ1 is the characteristic time that it

takes for energy to decay to 1/e of its initial value known as the spin-lattice relaxation

time. In general, τ1 is proportional to T−n, where n is an integer that can be 1 or vary

from 5 to 9 [108]. As a result, τ1 will become smaller as T increases and larger as T

decreases. The reason why Center A is not visible above 20K is because τ1 for Center

A has become too small. As τ1 approaches zero, the spin temperature approaches the

temperature of its surroundings, decreasing the absorbed energy and broadening the

EPR signal. The 11-line signal isn’t visible at 13K due to a related effect known as

power saturation. If the radiation density of the absorbed microwave energy becomes
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too large, the probability of absorption between levels becomes equal, and no net

absorption occurs extinguishing the EPR signal. It is important to keep in mind that

both of the defects responsible for Center A and the 11-line spectrum still exist and

are not being created or destroyed at lower temperatures, they just cannot be seen

with EPR unless the spectrum is taken at the appropriate temperature.

Figure 5.2. EPR spectra of LiAlO2 after irradiation with x rays recorded at 13K with
a frequency of 9.401GHz. (a) The magnetic field direction is along the [101] direction.
(b) [100] direction

Returning to Figure 5.1, the small signals in the EPR spectrum are mostly due to
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transition-metal impurities that were inadvertently introduced into the crystal during

growth. They can be either electron traps or hole traps depending on the charge

state of the impurity; all of them may contribute to the absorption, luminescence, or

other effects that arise from point defects. However, it is beyond the scope of this

dissertation to analyze every EPR signal that appears in the spectrum, and therefore

the rest of this chapter will focus on Center A, since it is the largest signal aside from

the trapped-hole and therefore will contribute the most to charge trapping processes.

Center A has a linewidth of 1.1mT and, using equation (3.2), represents 1.92 ×

1017 cm−3 spins. The fact that the spin density of Center A is about half that of the

11-line spectrum indicates that there are other electron trapping defects (possibly

non-paramagnetic) that remain unidentified because there must be an equal number

of electron and hole traps. Figure 5.2 shows Center A along the [101] and [100]

directions. As the magnetic field is varied from [001] to [100], Center A splits into

two separate signals, each representing four distinct orientations of the point defect.

These signals both move to higher magnetic field and separate further, until reaching

the [100] orientation where both signals come together again at 204.3mT. This large

observed g-shift as the magnetic field is rotated from [001] to [100] is indicative of a

3d7 ion with an effective S ′ = 1/2 spin which is elaborated upon in the next section.

5.3 Spin Hamiltonian Analysis

Fe+ is a 3d7, S = 3/2 ion, and the spin Hamiltonian for a 3d7 ion on a site with

tetrahedral symmetry is [109, 110]

H = µBŜ · g ·B+ Ŝ ·D · Ŝ+

uµB

{

Ŝx

3
Bx + Ŝy

3
By + Ŝz

3
Bz −

1

5

(

Ŝ ·B
)

[3S(S + 1)− 1]

}

, (5.3)

69



where u is a unitless “g” like parameter and the terms in brackets arise from per-

turbation theory. The higher order terms in Ŝ, shown in brackets in equation (5.3),

are added when dealing with S ≥ 3/2 magnetic species [111]. In general, the higher

order terms are small and can be neglected. For example, Co2+ in ZnS is another

tetrahedrally coordinated 3d7 ion, and u = −0.0048 for that impurity [112]. Although

these higher order terms should exist for the Fe+ ion in LiAlO2, they are assumed to

be small enough to ignore.

A characteristic of many transition-metal ions in a crystalline field is a high zero-

field splitting. Figure 5.3 shows what happens to the Zeeman levels when the splitting

is greater than the EPR transition energy ∆U . In Figure 5.3, the zero-field splitting

Figure 5.3. Fine-structure splitting for a S = 3/2 system. ∆E is the EPR transition
energy that can be measured using ν = 9.401GHz. The zero-field splitting is so large
that |2D| ≫ ∆E = hν.

is so large that it is greater than the EPR transition energy that can be measured

at ν = 9.401GHz. In this situation, the mS = +3/2 to +1/2 and mS = −3/2

to−1/2 EPR transitions are inaccessible for EPR spectrometers operating at X-band

frequencies. Depending on the size of the zero-field splitting, higher frequency spec-

trometers operating at the ν ≈ 36GHz “Q-band” may be able to access all of the
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EPR transitions which would result in a three line (2S) spectrum from an S = 3/2

ion.

Since the mS = +1/2 to -1/2 EPR transition is the only one accessible for the X-

band spectrometer, transition-metal ions with high zero-field splittings can be viewed

as having an effective S ′ = 1/2 (the S ·D · S term is contained within the effective

electron Zeeman term). This means of course that the EPR spectrum when viewed

along a high symmetry direction of the defect will appear as a single line, just like

Center A. Now that Fe+ can be treated as an S = 1/2 ion and the higher order terms

can be neglected, the spin Hamiltonian for Fe+ in tetrahedral symmetry reduces to

the Zeeman term. This effective Zeeman term can be written as

H = µB

[

g
′

q
Ŝ ′

zBz + g
′

⊥

(

Ŝ ′

xBx + Ŝ ′

yBy

)]

, (5.4)

where g
′

q
and g

′

⊥
are the observed effective g factors when the magnetic field is par-

allel or perpendicular to the z-axis of the defect coordinate system. g
′

q
and g

′

⊥
can

be calculated for Center A using its linepositions for the [001] and [100] directions,

respectively

g
′

⊥
=

hν

µBB⊥

=
6.626× 10−34 J·s× 9.401× 109 s−1

9.27401× 10−24 J T−1 × 0.2043T
= 3.2877 (5.5)

g
′

q
=

hν

µB(0.1415T)
= 4.7468. (5.6)

It is important to keep in mind that these are not the real g principal values but

parameters that can be useful when comparing the observed linepositions in EPR

spectra.

The actual g matrix for Center A with S ′ = 1/2 was solved in the same manner as

the trapped-hole in Section 4.3 using the magnetic field values of the linepositions as

the sample was rotated through various planes. The principal values and directions
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of the g-values are shown in Table 5.1. Figure 5.4 shows the computer-generated

Table 5.1. g matrix parameters for the trapped-electron center in LiAlO2 crystals.
Estimated error limits are ±0.0006 for the principal values and ±2◦ for the angles.

Principal Value Principal-Axis Direction (θ, φ)

gx 3.6301 (89.89◦, 224.96◦)

gy 2.1232 (64.99◦, 134.91◦)

gz 5.1401 (25.00◦, 315.19◦)

angular dependence prediction of the Center A lineposition plotted along side the

data points used in calculating the g matrix parameters. Since the crystal structure

Figure 5.4. Angular dependence of the g matrix for the trapped-electron center in
LiAlO2. Center A magnetic field positions are plotted as a function of magnetic field
direction for the three high symmetry planes in the crystal. The microwave frequency
is 9.401 GHz.The red circles are the data points from Table 5.2.

of lithium aluminate is tetragonal, if the x, y, and z axes of the defect aligned with

the crystal axes, then gx = gy should have been obtained. The fact that gx 6= gy

in Table 5.1 indicates the defect axes are not aligned with the crystal axes. Table

5.2 shows the magnetic field values used in the least-squares MATLAB program to

obtain the results in Table 5.1 and Figure 5.4.
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Table 5.2. Magnetic field values used in a least-squares fitting program to determine
the g matrix of the trapped-electron center.

Direction of B B (mT) Direction of B B (mT) Direction of B B (mT)
[001] to [100] [100] to [010]

[001] 141.380 +45◦ 205.330 [100] 204.340
+10◦ 136.302 +50◦ 144.865 +10◦ 196.508
+10◦ 149.726 +50◦ 214.647 +10◦ 213.258
+20◦ 134.260 +60◦ 154.691 +20◦ 191.196
+20◦ 161.729 +60◦ 229.288 +20◦ 220.817
+30◦ 135.052 +70◦ 167.840 +30◦ 187.286
+30◦ 177.144 +70◦ 232.179 +30◦ 227.287
+40◦ 138.190 +80◦ 185.519 +40◦ 184.940
+40◦ 194.448 +80◦ 221.444 +40◦ 230.765
+45◦ 141.240 [100] 204.340 +45◦ 185.177

+45◦ 231.151

5.4 Trapped-Electron Center Discussion

Previous EPR spectroscopy results have shown that iron impurities in nominally

pure compounds can exist in paramagnetic charge states [113–116], and Auvray-

Gely et al specifically reported iron as the largest trace impurity in their LiAlO2

samples [25]. Iron enters a crystal during growth and acts as a charge compensating

defect. In the case of LiAlO2, iron sits at a lithium site in the 2+ charge state and

compensates the large number of lithium vacancies that were shown in Chapter 4 to

exist in the crystal. It is not known whether Fe2+ sits at an isolated lithium site or is

at a site adjacent to a lithium vacancy. Fe+ and Fe3+ are relatively easy to observe

with EPR because of their odd number of electrons in the d shell. While Fe2+ is

EPR active because of the unpaired electrons in the d shell (Hund’s rules say that

electrons in the d shell will fill empty orbitals first before pairing up, so Fe2+ has

two paired electrons in the first d orbital, and four unpaired electrons in the next
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four orbitals [117]), it has been found experimentally that d-shell ions with an even

number of electrons are difficult to observe with EPR when the Zeeman effect is small

compared to the fine-structure splitting [118, 119]. Since no EPR spectra are visible

in as-grown lithium aluminate crystals, it can be safely concluded that iron is not in

the easy to observe 1+ or 3+ charge states prior to x ray irradiation.

Table 5.4. The ionic radii of Li+, Al3+, Fe2+, and Fe3+ when surrounded by four
anions [120].

Element Effective Ionic Radii in pm (10−12m)

Al3+ 39

Fe2+ 63

Fe3+ 49

Li+ 59

Table 5.4 lists the effective ionic radii of the lithium aluminate constituent cations

and the iron ion in different oxidation states. While it is not impossible for the Fe2+

ion to sit at an aluminum site, it will sit at a lithium site much more readily because of

the closely matched radii. Even its 3+ charge state has a large ionic radius compared

to Al3+, so the Li+ site would seem to be favored. Also, if Fe2+ sits at an aluminum

site, it will act as a hole trap under ionizing radiation, giving up an electron so it

can change to the 3+ oxidation state. That means that both Center A and the 11-

line spectrum would both be hole traps, and there would be a large and unknown

electron trapping defect, or several smaller electron trapping defects. Fe2+ sitting at

both isolated lithium and aluminum sites would compensate each other, but x ray

irradiation would then produce easily observable spectra from both Fe+ and Fe3+ of

the same order of magnitude, which is not observed. Taking into account that only

one line is observed with ionizing radiation, along with the information in Table 5.4,
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indicates that Fe2+ preferentially migrates to lithium sites.

Out of the other possible iron group transition-metals that are likely to be im-

purities in the LiAlO2 crystal, Sc, V, Mn, Co, and Cu can be dismissed. 100% of

their stable isotopes have I ≥ 3/2, and would therefore display distinct and strong

hyperfine splittings which are not observed. Ti and Zn were shown to be an order

of magnitude smaller in concentration than Fe from the elemental impurity analysis

conducted by Auvray-Gely et al [25]. The location of an EPR line from Cr3+ has

already been reported at ≈ 180mT by Yamaga et al [26]. That leaves Ni as the

last alternative transition-metal that could give rise to a signal similar to Center A

in its 3d7 3+ charge state. If Ni3+ is formed after irradiation, then it would have

existed as either Ni2+ or Ni4+ prior to irradiation. Ni2+ has an effective ionic radius

of 55 pm which is too large to sit on the Al3+. It would be a hole trap even if it did,

and Center A has already been ruled out as a hole trap. If it sat on the Li+ site,

then it would trap an electron and convert to Ni+ after irradiation, which is a 3d9

configuration. That leaves the possibility of Ni4+ trapping an electron on the Al3+.

While Ni3+ cannot be ruled out entirely without further research, lithium aluminate

samples from ten different plates supplied by MTI were investigated and Center A

was the strongest impurity line after x ray irradiation in all but one sample. Fe is

the most abundant transition-metal in the world, and should on average, show up as

a trace impurity in a metal oxide in larger concentrations than nickel. Auvray-Gely

et al, for example, showed a nickel concentration half that of iron [25].

From the preceding arguments, the evidence would indicate that iron is inadver-

tently introduced into lithium aluminate crystals during growth and exists in the 2+

charge state. The Fe2+ ions act as charge compensators for lithium vacancies and sit

at either isolated lithium sites or lithium sites adjacent to a lithium vacancy. With

the introduction of ionizing radiation, the Fe2+ ions will trap an electron that was
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lost to the conduction band by an O2− ion adjacent to a lithium vacancy (the 11-line

hole trap). This process can be summarized as

(1) hν +O2− → O− + e− (5.7)

(2) Fe2+ + e− → Fe+. (5.8)

EPR investigations of iron in ternary oxides with similar crystal structures as LiAlO2

seem to be non-existent from literature searches using Thomson Reuters Web of Sci-

ence, but much has been published on the EPR behavior of iron in binary compounds

such as the alkali-earth oxides and alkali-halides. In NaF, NaCl, KCl, MgO, and LiCl,

EPR lines from Fe+ are observed at temperatures below approximately 20K. This

is the same behavior observed for Center A. In these crystals, iron sits on the cation

site in the 2+ charge state and no EPR signals from iron are visible before receiving

ionizing radiation, again, just as in LiAlO2. While Fe+ in these compounds is nor-

mally in octahedral coordination and exhibits an isotropic g, there exists variants of

this defect in some of these materials due to nearest neighbor cation vacancies that

result in the Fe+ ion experiencing orthorhombic or monoclinic local symmetry. These

distortions can change the coordination in the local region of the defect to tetrahedral,

which then allows comparisons to LiAlO2. Table 5.5 shows a comparison between g

Table 5.5. Comparison of Center A spin-Hamiltonian parameters from Table 5.1, with
those reported for Fe+ in select materials.

Host Symmetry gx gy gz Reference

NaF Orthorhombic 4.585 2.029 5.792 [114]
NaCl Orthorhombic 4.222 2.630 6.135 [121]
LiCl Orthorhombic 4.365 2.722 5.702 [122]
KCl Monoclinic 3.1823 1.9084 7.121 [123]

LiAlO2 Tetragonal 3.6301 2.1232 5.1401 This work

matrix parameters for Center A and Fe+ substitutional impurities in some of these
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binary compounds. A correlation between the g values can clearly be seen, providing

another indicator that Center A is in fact an Fe+ ion.

5.5 Thermoluminescence Results

Figure 5.5. Thermal anneal data for the Center A EPR signal has been added to the
data from Figure 4.9. The fact that Center A anneals away at a higher temperature
indicates there are other electron and hole traps at work.

Figure 5.5 shows the same data from Figure 4.9 with the addition of the anneal

curve of the Center A EPR signal. The conclusion drawn from this figure is that since

Center A doesn’t go to zero around 105 ◦C, the 11-line trapped hole is most likely

releasing its holes to recombine at trapped-electron sites. Since Center A has half as

many spins as the trapped-hole center, there must be other electron trapping sites

that are playing a role in recombination, either some of the smaller signals seen in

Figures 5.1 and 5.2, or transition-metals in charge states that are not paramagnetic.

Also, since the trapped-hole disappears at 105 ◦C while Center A remains, there must
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be other trapped hole sites as well; either some of the less intense EPR signals or

non-paramagnetic species.
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VI. Characterization of Copper-Diffused LiAlO2

6.1 Introduction

Lithium aluminate is currently being investigated for radiation-detection applica-

tions involving OSL and thermoluminescence TL by different researchers [5–10, 100,

124, 125]. Copper-doped LiAlO2 has been shown to have a large OSL response that

is comparable to the commercially available OSL dosimeter material Al2O3:C, as well

as increased sensitivity [10]. In this chapter, the fundamental mechanisms responsible

for OSL in LiAlO2 have been investigated. The strength of the OSL response depends

in general on the nature of the active electron and hole traps in a material [70,72]. An

OSL response from copper-diffused LiAlO2 crystals was observed to be approximately

100 times larger than in as-grown crystals. Optical absorption, PL, PLE, and EPR

were used to experimentally identify the electron and hole traps participating in the

OSL. During an x ray irradiation at room temperature, Cu+ ions sitting at Li+ sites

will trap holes and form Cu2+ ions. At the same time, Fe2+ ions that sit at Li+ sites

will trap electrons and form Fe+, giving rise to the Center A EPR line discussed in

Chapter 5. OSL occurs when trapped electrons are optically released from Center A

and recombine with the holes at the Cu2+ ions.

Samples of LiAlO2 from MTI cut from the same c-plates in the same dimensions

as in Chapters 4 and 5 were subjected to copper diffusion at high temperature. The

samples were wrapped in a single layer of thin (0.0125mm thick) copper foil and

placed into a one-zone tube furnace operating at 900 ◦C in flowing nitrogen gas. The

wrapped sample was held at this temperature for 2 hours, and then was quickly cooled

to room temperature within 2 minutes. With this process, copper enters the crystal

as Cu+ ions and occupies Li+ sites. Nitrogen gas was used because during preliminary

anneals in air, a very complicated Cu2+ EPR spectrum was seen in the as-annealed
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crystal that behaved very differently from the behavior described in section 6.5. It

is suspected that diffusion in air allows copper oxides to form on the surface of the

crystal as well as replacing Li+ ions in the bulk of the crystal, as there were three

additional copper EPR spectra observed in addition to the “normal” Cu2+ spectra

described in section 6.5. The flowing nitrogen gas allows copper to diffuse into the

crystal without reacting with oxygen to form these surface complexes.

From the intensities of the EPR signals, the total concentration of Cu2+ ions

produced during a room temperature x ray irradiation of the Cu-diffused crystal is

estimated to be approximately 1.3 × 1018 cm−3 using equation (3.2). The majority

of copper ions that enter the crystal remain in the non-paramagnetic Cu+ charge

state after x ray irradiation, because the creation of Cu2+ is limited by the number

of available electron traps and competition from other hole-trapping defects like the

11-line trapped-hole center discussed in Chapter 4. Therefore, the total amount of

copper in the crystal is most likely 10 to 100 times greater than the Cu2+ estimate.

Also, the uniformity of copper diffusion was not measured in this study. Although the

following sections details the results of experiments with one copper-diffused crystal,

similar behavior was observed with LiAlO2 samples cut from different boules and

diffused with copper at high temperature.

6.2 Optical Absorption Results

Optical absorption data was taken at room temperature using the Cary-5000 with

unpolarized light propagating along the [001] direction in a two-sides polished crystal.

The optical path length was 0.5mm and corrections were made for reflective losses

using equation (4.4) under the same principles as discussed in section 4.5.

Figure 6.1 shows the optical absorption spectra that were obtained. In Figure

6.1, spectrum (a) was taken from an as-grown reference crystal and shows that there
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Figure 6.1. Optical absorption spectra from LiAlO2 crystals taken at room temperature
with unpolarized light propagating along the [001] direction. (a) As-grown reference
crystal with no diffused copper. (b) After Cu diffusion but before x ray irradiation. (c)
After Cu diffusion and after 60kV, 30mA generated x ray irradiation (d) After diffusion
and after exposure to 425nm OSL stimulation light.

were no major absorption bands present prior to copper diffusion. Spectrum (b)

was taken from the sample that had been copper-diffused at 900 ◦C; spectrum (c)

was taken after the copper-diffused sample was exposed to 60 kV, 30mA x rays at

room temperature; spectrum (d) was taken after exposing the x ray irradiated crystal

to 425 nm OSL stimulation light for 300 s. As shown in Figure 6.1(b), the copper

diffusion introduces a well-defined absorption band with a peak near 277 nm that has

a partially resolved shoulder on its short-wavelength side. This peak is due to Cu+

ions occupying Li+ sites; Cu2+ and Cu+ have effective ionic radii of 57 and 60 pm

respectively, making them well suited to replace a Li+ ion with its 59 pm effective

ionic radius [120]. Similar absorption bands have also been observed in wide-band
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gap insulators and are attributed to the 3d10 to 3d94s1 intracenter transition of the

Cu+ ion [126–128]. The intense optical absorption at wavelengths shorter than 225 nm

seen in spectra (b), (c), and (d) after copper diffusion is clearly associated with the

introduction of copper into the crystal as it doesn’t appear in the as-grown spectrum

(a). This absorption is most likely a result of transitions to higher energy levels of

the Cu+ ion.

As shown in spectra (c) and (d), the x ray irradiation at room temperature intro-

duces an absorption band peaking near 379 nm, with a tail extending into the visible

beyond 500 nm, while having only a slight effect on the band at 277 nm. The differ-

ence in behavior between the 379 nm and 277 nm bands can be attributed in part to

different oscillator strengths for the two optical absorption bands. The 379 nm band

is the same band seen in Figure 4.8(b) for a nominally undoped as-grown LiAlO2

crystal that had been exposed to x rays at room temperature. This band is caused

by absorption from Center A (i.e., Fe+), and the EPR results of Section 6.5 support

this assignment. The spectrum in Figure 6.1(d) was taken after the 425 nm OSL

stimulation light removed some of the trapped electrons from Center A, which ac-

counts for the decrease in intensity of the 379 nm absorption band. The reason the

OSL stimulation light does not completely eliminate the 379 nm absorption band is

discussed in Section 6.5.

6.3 Photoluminescence Results (PL and PLE)

Figure 6.2 shows the photoluminescence (PL) and photoluminescence excitation

(PLE) spectra obtained from the copper-diffused sample using the Fluorolog-3 by

Horiba Scientific. The spectra were collected at room temperature with the PL emis-

sion band peak at 359 nm (3.45 eV) and the corresponding PLE band peak at 273 nm

(4.54 eV). The Stokes shift is 1.09 eV, the full width at half maximum (FWHM) of
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Figure 6.2. PL and PLE spectra obtained at room temperature from Cu+ ions in a
copper-diffused LiAlO2 crystal. The PL spectrum was taken with 270nm excitation
light and the PLE spectrum was obtained by monitoring the emission at 360nm.

the PL band is 0.68 eV, and the FWHM of the PLE band is 0.55 eV. The shape of

the PL band is well described by a single Gaussian, while the PLE band requires

more than one Gaussian because of the distinct shoulder visible on its high energy

side. The shape of the PL emission band did not change as the excitation wavelength

was varied from 250 to 290 nm, and the shape of the PLE band did not change as

the emission monitoring wavelength was varied from 340 to 380 nm. This would indi-

cate that the PL band in Figure 6.2 is a single band representing one recombination

process instead of several overlapping bands.

The PL and PLE bands were not observed in the reference crystal. However,

during early tests of nominally undoped LiAlO2 crystals, these PL and PLE bands
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were observed but at an intensity 2-3 orders of magnitude less than the copper-diffused

sample. This would suggest that copper is introduced unintentionally during growth

and indeed, Auvray-Gely et al reported 2 parts per million (2 ppm) Cu impurities

in their elemental analysis of nominally undoped LiAlO2 crystals [25]. This is an

important reminder for researchers that very small quantities of impurities can have

measurable effects on the properties of “pure” crystals.

The peak of the PLE band occurs at close to the same position as the peak

of the intense absorption band in Figure 6.1 (273 nm vs. 277 nm). The difference

is experimental and arises primarily from attempting to precisely correct the PLE

spectrum for variations in the excitation lamp intensity. The close agreement in

wavelength strongly suggests that the absorption band and the PLE peak have a

common origin; specifically the 3d10 to 3d94s1 intracenter transition of a Cu+ ion.

The PL emission would then be from an excited electron undergoing 3d94s1 to 3d10

transitions in the Cu+ ion. Fujimoto et al [6] has previously assigned PL and PLE

bands from LiAlO2:Cu crystals that are very similar to those shown in Figure 6.2

to Cu+ ions substituting for Li+ ions. Also, similar PL and PLE bands have been

reported in other wide-band gap insulators with monovalent copper impurity ions

such as LiCl [129], NaI [130], and Li2B4O7 [131–133].

6.4 Optically Stimulated Luminescence Results

A significant OSL response was observed in the copper-diffused LiAlO2 crystal

after exposing it to x rays at room temperature. Figure 6.3 shows a typical OSL

decay curve taken with the Fluorolog-3 spectrometer operating in the kinetics mode.

The excitation light was set at 425 nm while emission was monitored at 360 nm. In

general OSL decay curves are non-exponential [72], and this was confirmed for the

decay curve in Figure 6.3 when plotted on a logarithmic scale. The OSL response
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Figure 6.3. OSL response obtained at room temperature from a copper-diffused LiAlO2

crystal. The excitation light was at 425nm and the monitoring light was 360nm. Also
shown is the OSL response from the as-grown reference crystal with no copper diffusion.

from the reference crystal obtained under identical conditions, also shown in Figure

6.3, is approximately 10 times weaker than the copper-diffused signal.

The starting intensity of the OSL response (i.e., the intensity just after t = 0)

from the copper-diffused LiAlO2 crystal decreased as the stimulation wavelength was

changed from 425 to 500 nm, which suggests that wavelengths closer to 400 nm are

more effective in producing OSL emission than wavelengths near 500 nm. This behav-

ior directly correlates the OSL wavelength response to the optical absorption spectrum

of the copper-diffused crystals after x ray irradiation. As shown in Figures 6.1(c) and

(d), the low-energy side of the broad 379 nm absorption band is decreasing in this

400 to 500 nm range. The 379 nm band is due to Fe+ absorption from Center A, and

excitation into this band ionizes the Fe+, releasing an electron to participate in OSL

luminescence. As the band decreases in the 400 to 500 nm region, ionization becomes
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less effective, and therefore the OSL response decreases.

Figure 6.4. Spectral dependence of the OSL emitted light from the copper-diffused
LiAlO2 crystal. The peak in the OSL emission is at 357nm. The PL emission curve
from Figure 6.2 is included for comparison.

The solid curve in Figure 6.4 displays the spectral dependence of the OSL emission.

The spectral dependence was obtained using the Fluorolog-3 by having the emission

monochromator repeatedly scan from 300 to 410 nm, as the OSL signal was decaying

as a function of time during stimulation with 450 nm light. Each scan took 6.5 s,

therefore 20 scans were recorded as the OSL decayed over a period of 130 s. No

significant change in the wavelength dependence was revealed during this series of

scans, which suggests that the recombination site remains the same during OSL decay.

The specific curve shown in Figure 6.4 was taken 4 s after initial exposure of the crystal

to stimulation light. The OSL emission peak is at 357 nm (3.47 eV) with a FWHM of

0.63 eV, and is very close to the same values as the PL emission peak from Figure 6.2,
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shown as the dashed curve in Figure 6.4. This leads to the unavoidable conclusion

that the PL and OSL have a common origin; a Cu recombination site is responsible for

both PL and OSL emissions in copper-diffused LiAlO2 crystals. The slight differences

in the two emission curves are attributed to small changes in the method of collecting

the data, and are not believed to be fundamental in nature. A few research groups

have attributed the presence of oxygen vacancies to observed optical phenomena in

LiAlO2 doped with transition-metals [134, 135] and rare-earths [100, 136], thus far,

there is no experimental evidence to suggest that oxygen vacancies are involved in

the OSL response of copper-diffused LiAlO2 crystals.

As discussed in Section 6.3, nominally undoped LiAlO2 samples may contain resid-

ual amounts of Cu+ impurities. This unintentionally introduced copper could cause

a small, but observable OSL response. That is most likely why the reference crys-

tal in Figure 6.3 shows a significantly weaker OSL response than the copper-diffused

crystal. The x ray irradiated undoped LiAlO2 crystal used to measure absorption in

Figure 4.8 also has a peak near 277 nm, which gives more credence to the idea that

Cu impurities can be present and have a measurable effect in nominally pure crystals.

6.5 Electron Paramagnetic Resonance Results

Figure 6.5 shows two EPR spectra taken from the copper-diffused LiAlO2 crystal.

These data were obtained at 28K with the magnetic field along the [001] direction.

Figure 6.5(a) was recorded after the crystal was irradiated at room temperature with

x rays. Before the irradiation, there were no significant EPR signals in this region of

magnetic field. Three trapped-hole centers are produced by the x rays. The set of 11

equally spaced, but not equally intense, lines in the region between 326 and 336mT

has been assigned to a hole localized on an oxygen ion adjacent to a lithium vacancy,

as detailed in Chapter 4. The other two sets of lines in Figure 6.5(a) are assigned
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to x ray-induced Cu2+ ions (i.e., Cu2+ ions are formed during the irradiation when

holes are trapped at Cu+ ions occupying Li+ sites). These two Cu2+ EPR spectra in

LiAlO2 have not been previously reported in the literature.

Stick diagrams above Figure 6.5(a) identify individual lines associated with each

of the new Cu2+ centers. EPR spectra of Cu2+ ions are easily recognized by their

hyperfine patterns caused by the two stable copper isotopes (63Cu is 69.2% abundant

with I = 3/2 and 65Cu is 30.8% abundant with I = 3/2). Because of the I = 3/2

nuclear spins, sets of four-line hyperfine patterns are observed. The 65Cu nuclei have

a slightly larger magnetic moment than the 63Cu nuclei, which explains why the

separations among the four lines for 65Cu are a little larger than the separations

among the four lines for 63Cu. Direct evidence verifying that these new sets of lines

in Figure 6.5(a) are due to Cu2+ ions comes from the lines at highest and lowest

magnetic fields, where the two isotopes are clearly resolved. The more widely spaced

set of copper-related lines (the blue stick diagrams) is assigned to a Cu2+ ion at a Li+

site with an adjacent Li+ vacancy (i.e., a Cu2+-VLi center). The other set of copper-

related lines (the red stick diagrams) is assigned to isolated Cu2+ ions (i.e., Cu2+ ions

at Li+ sites with no defects nearby). With the magnetic field along the [001] direction,

the g values for the isolated Cu2+ center and the Cu2+-VLi center are 1.943 and 1.976,

respectively. A primary reason for assigning the two spectra in Figure 6.5(a) to an

isolated Cu2+ ion and a Cu2+ ion next to a Li+ vacancy comes from Li2B4O7 crystals

where two similar Cu2+ defects have been reported [137]. A slight amount of confusion

was initially encountered when attempting to make assignments for the EPR spectra

in Figure 6.5(a) because the highest field lines (near 367mT) from each Cu2+ center

directly overlap. Once this overlap was recognized, the two Cu2+ sets of hyperfine

lines were easily distinguished (as illustrated by the stick diagrams). In terms of

“effective” charges relative to the regular lattice, the isolated Cu2+ centers (red) have

88



Figure 6.5. EPR spectra of Cu2+ ions produced by x rays in a copper-diffused LiAlO2

crystal. These data were taken at 28K with the magnetic field along the [001] direction
and a microwave frequency of 9.401GHz. (a) Spectrum taken after irradiating at room
temperature with x rays, but before OSL. (b) Spectrum taken after exposure to OSL
stimulation light (425nm) at room temperature.
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a positive charge and the Cu2+-VLi centers (blue) are electrically neutral. Trapped-

hole centers represented by the 11-line spectrum in Figure 6.5 are also neutral defects

(Chapter 4).

After obtaining the post-irradiation EPR spectrum in Figure 6.5(a), the OSL

response of the copper-diffused crystal was recorded at room temperature using a

stimulation wavelength of 425 nm. This emptied the OSL-active traps. Then the

EPR spectrum in Figure 6.5(b) was taken at 28K with the magnetic field along the

[001] direction. Comparing Figure 6.5(a) with Figure 6.5(b) shows that the isolated

Cu2+ centers (identified by the red stick diagrams) were nearly eliminated by the OSL

stimulation light and thus are shown to be a major participant in the OSL process.

The other two trapped-hole centers, specifically the Cu2+-VLi centers (identified by

the blue stick diagrams) and the 11-line Li-vacancy-associated centers, did not change

significantly during the exposure to the OSL stimulation light, and thus are not

participants in the OSL response of the crystal. Optimizing the OSL signal will

require maximizing the concentration of isolated Cu2+ ions formed by the ionizing

radiation.

The identity of the electron trap participating in the OSL process was revealed

to be the Center A Fe+ signal with the aid of EPR. The Center A EPR line near

141.5mT (with a microwave frequency of 9.401 GHz) was observed in both as-grown

and copper-diffused LiAlO2 crystals after an x ray irradiation at room temperature.

This signal is shown by the solid line in Figure 6.6.

As discussed in Chapter 5, the EPR spectrum in Figure 6.6 is not present in

our as-grown LiAlO2 crystals prior to x ray irradiation. This indicates that the Fe

impurities are initially present as Fe2+ ions substituting for Li+ ions and serve as

the primary charge compensator for the large number of Li+ vacancies known to be

present in the as-grown LiAlO2 crystals (Chapter 4). These Li+ vacancies may be
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Figure 6.6. EPR spectra from radiation-induced Fe+ ions in a copper-diffused LiAlO2

crystal. These data were taken at 15K with the magnetic field along the [001] direction
and a microwave frequency of 9.401GHz. (a) Solid line taken after irradiating at room
temperature with x rays but before OSL. (b) Red dashed line taken after exposure to
OSL stimulation light (425nm).

non-locally compensated by distant Fe2+ ions or they may have an Fe2+ ion at an

adjacent Li+ site. Although the Center A EPR spectrum in Figure 6.6 is assigned

to trapped electrons in the form of Fe+ ions, it is not known if these Fe+ ions are

adjacent to Li+ vacancies. A more detailed analysis of the angular dependence of the

Center A EPR spectrum in the future may answer this question. (It does not appear

that oxygen vacancies provide charge compensation for lithium vacancies in as-grown

crystals; as discussed in Chapter 7, neither F or F+ center optical absorption bands

are seen in as-grown LiAlO2)

As shown in Figure 5.1(b) and by the more intense EPR spectrum (solid curve) in

Figure 6.6, Fe+ ions are formed when Fe2+ ions initially present in the LiAlO2 crystal
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trap an electron during exposure to ionizing radiation. The less intense spectrum

(dashed red curve) in Figure 6.6 was taken after exposing the x ray-irradiated crystal

to 425 nm OSL stimulating light for 300 s. This light reduced the Center A EPR

spectrum by nearly 25% as a large photoionization cross-section for the Fe+ ions

allows the stimulating light to efficiently release electrons. (In Figure 6.1, the 379 nm

absorption peak in spectrum (d) also decreased by about 25% after exposure to 425 nm

OSL stimulating light.) The optically released electrons recombine with holes at the

isolated Cu2+ ions. All of the Fe+ ions represented by the solid line spectrum in

Figure 6.6 are not expected to release electrons by OSL stimulating light. There are

two hole centers (the 11-line hole center and the Cu2+-VLi center) produced by the

x rays that are not significantly affected by OSL stimulation light, as seen in Figure

6.5(b). These centers represent more than half of the total trapped holes in Figure

6.5(a), with isolated Cu2+ centers accounting for the remaining trapped holes. The

11-line and the Cu2+-VLI trapped-hole centers are neutral defects and have smaller

cross-sections for electron capture than positively charged isolated Cu2+ ions. This

means that optically released electrons from Fe+ ions will recombine at lower rates

with these neutral trapped-hole centers, and thus explains a lack of significant change

in the intensities of the 11-line hole center and the Cu2+-VLi center in Figure 6.5(b)

when most of the isolated Cu2+ centers are accepting electrons. It is also expected

that many of the optically released electrons will be retrapped by Fe2+ ions. Because

of the neutral hole traps and retrapping, the number of Fe+ ions in Figure 6.6 is

only partially reduced when the x ray-irradiated crystal is briefly exposed to OSL

stimulation light.
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6.6 Summary

Optimizing a material for optically stimulated luminescence (OSL) applications

requires the following information: (1) the identities of the participating trapped-

electron and trapped-hole centers introduced during an exposure to radiation, (2) the

spectral dependence (i.e., the peak position and shape) of the absorption band that

allows the stimulation light to initiate the OSL recombination process, and (3) the

recombination site and the spectral dependence of the emitted light. This chapter

has addressed these three points. Lithium aluminate (LiAlO2), doped or diffused

with copper, has been shown to produce a large optically stimulated luminescence

(OSL) signal. The participating defects initially present in the material are Cu+

ions and Fe2+ ions, both on Li+ sites. During an irradiation, the Cu+ ions trap

holes and become Cu2+ ions and the Fe2+ ions trap electrons and become Fe+ ions.

The Fe+ ions have a broad optical absorption band peaking near 379 nm with a

tail extending beyond 500 nm. Stimulation light with wavelengths in this Fe+ band

releases electrons, which then recombine with holes at the Cu2+ ions and form Cu+

ions in a short-lived excited state, i.e., (Cu+)∗ ions. The OSL emitted light with a

peak near 357 nm is characteristic of the radiative decay of these (Cu+)∗ ions and is

the same as the photoluminescence observed from intracenter excitations of Cu+ ions

in LiAlO2. The following is a summary of the OSL process in Cu-doped LiAlO2.

(1) Irradiation step e− + Fe2+ → Fe+ and h+ + Cu+ → Cu2+

(2) Stimulation step Fe+ + hν (425 nm absorption)→ Fe2+ + released e−

(3) Emission step released e− + Cu2+ → (Cu+)∗ → Cu+ + hν (357 nm emission)

In conclusion, these results suggest that LiAlO2 containing an appropriate combi-

nation of Cu+ ions, Fe2+ ions, and lithium vacancies will be a useful OSL material. To

be active in OSL, the Cu+ ions must be on Li+ sites and isolated from other defects.
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(It is important to note that not all of the Cu+ ions in a sample may be in these

isolated sites.) The Fe2+ ions must also occupy Li+ sites with charge-compensating

Li+ vacancies nearby or at more distant sites. These compensating Li+ vacancies are

an important defect in OSL-active Cu-diffused LiAlO2 material. If there are no Li+

vacancies, Fe2+ ions are not expected to be present on Li+ sites and thus there would

be no defects to trap electrons during an exposure to ionizing radiation (even though

the crystal may contain Fe ions in other valence states and possibly at different sites).

Once an appropriately co-doped LiAlO2 sample (with copper and iron) is available,

optimum OSL monitoring wavelengths are expected to be between 330 and 390 nm

and optimum stimulation wavelengths are expected to be between 400 and 450 nm.
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VII. Characterization of Neutron-Irradiated LiAlO2

7.1 Introduction

If LiAlO2 is to be utilized in applications that involve exposure to neutron ir-

radiation, then an understanding of the point defects that are created by neutron

collisions is critically important. Oxygen ions will be displaced by neutron collisions

leaving behind oxygen vacancies, and for oxide crystals, the oxygen vacancy is the

most fundamental and extensively studied point defect. Oxygen vacancies are impor-

tant in oxides because they can effect the properties and performance of a material,

and should be expected to produce effects in neutron-irradiated LiAlO2. In the role

of lithium aluminate as a tritium breeder material for example, it has been known for

some time that it is challenging to efficiently extract tritium from the breeder mate-

rial [4,138]. It is possible that the trapping of tritium ions at oxygen vacancies causes

a decrease in the recoverable yield of tritium. It is well established that hydrogen, in

the form of H− or H2− ions, can be stably trapped in oxygen vacancies in MgO and

ZnO [139–142]. Analogous tritium-trapping behaviors may be occurring with oxygen

vacancies in neutron-irradiated LiAlO2.

In this chapter, oxygen vacancies with one trapped electron (F+ centers or V+
O cen-

ters) and aluminum vacancies produced after irradiation of single crystals of LiAlO2

with high-energy neutrons are investigated. These F+ centers are responsible for

an optical absorption band peaking near 238 nm and an electron paramagnetic reso-

nance (EPR) spectrum showing resolved hyperfine structure from the two 27Al ions

neighboring the vacancy. A metastable state of the F+ center is also identified which

occurs because of an asymmetrical sharing of the unpaired spin between the two Al3+

ions neighboring the vacancy. There are two similar “ground” states that are distin-

guished by which of the Al ions has the greater unpaired spin density. One state has
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a slightly higher energy and is therefore metastable. Exposing the neutron-irradiated

crystal to ultraviolet light converts a few of the F+ centers to F centers, i.e., vacan-

cies with two trapped electrons. The F centers have an optical absorption band that

peaks at 272 nm. Photoluminescence (PL) and photoluminescence excitation (PLE)

bands from the F centers peak near 416 and 277 nm, respectively.

Also in this chapter, the observation of doubly ionized (S = 1/2) aluminum va-

cancies produced during neutron irradiation is discussed. These defects consist of

one hole trapped on an oxygen ion adjacent to the aluminum vacancy. The 11-line

trapped-hole EPR spectrum discussed in Chapter 4 is not observed from neutron-

irradiated samples, even after a subsequent exposure to x rays. This would indicate

that the lithium vacancies that are present in as-grown LiAlO2 crystals are no longer

serving as a simple trap for radiation-induced holes. The most likely reason is the

lithium vacancies have trapped oxygen interstitials during the neutron irradiation.

A similar trapping of oxygen interstitials by isolated magnesium vacancies has been

reported in neutron-irradiated MgO [143].

Undoped c-plate single crystals of LiAlO2 were obtained from MTI and cut into 3

× 3 × 0.5mm3 pieces. Several samples were irradiated with neutrons using the central

irradiation facility (CIF) at the Ohio State University Nuclear Reactor Laboratory

(Columbus, Ohio). This is a pool-type reactor that operates at a maximum power of

450 kW. One sample was held in the CIF for 3 hours and another sample was held in

the CIF for 1.5 hours. Similar spectroscopic results were obtained from both samples

except the 1.5 hour sample produced less intense spectra than the 3 hour sample in

all cases. In the CIF, the total neutron flux was ≈ 2.1× 1013 neutrons
cm2s

and the thermal

neutron flux was ≈ 1.4 × 1013 neutrons
cm2s

. The sample temperatures were not measured

during irradiation but are estimated to have remained below 150 ◦C.
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7.2 Electron Paramagnetic Resonance Results

7.2.1 The F+ Center.

Figure 7.1(a) shows the EPR spectrum obtained from the 3 hour neutron-irradiated

lithium aluminate single crystal. The spectra were taken at 100K with B along the

[001] direction and approximately 20µW of microwave power. As has been men-

tioned previously, prior to irradiation, there are no significant EPR signals in as-

grown LiAlO2 crystals; only a few weak lines from transition-metals can be seen.

Figure 7.1(a) is really a combination of two different types of singly ionized oxygen

vacancy EPR signals that are shown separately in Figures 7.1(b) and 7.1(c). The two

oxygen vacancy spectra contain large numbers of partially resolved 27Al hyperfine

lines of similar intensity in the magnetic field region extending from 284 to 384mT.

The three intense lines that are cut off in the figure between 322 and 340mT are

from unrelated defects and they cover up a portion of the middle hyperfine lines from

the F+ centers. They will be discussed further in subsection 7.2.2. One of the two

oxygen-vacancy spectra in Figure 7.1(a) is assigned to stable F+ centers and the other

is assigned to a metastable state of the F+ centers (labeled F+∗). The concentration

of defects was estimated from equation 3.2 to be 1.1 × 1019 cm−3. Even though rel-

atively large concentration of oxygen vacancies are present in the neutron-irradiated

crystal, the EPR spectra are not easy to observe. The hyperfine lines from the F+

and F+∗ centers are broad (≈ 2mT) and easily saturate with microwave power. This

is why the microwave power used is less than the 2mW that was used for the 11-line

trapped hole and the Cu2+ EPR signals. Each spectrum in Figure 7.1 is an average

of 25 scans, which improves the signal-to-noise ratio by a factor of five.

The procedures that established the presence of two distinct oxygen-vacancy cen-

ters in Figure 7.1(a) are explained in the following steps. Figure 7.1(a) shows the

spectrum immediately after neutron-irradiation. The neutron-irradiated crystal was
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Figure 7.1. EPR spectra of oxygen vacancies in a neutron-irradiated LiAlO2 crystal.
Data were taken at 100K with the magnetic field along the [001] direction. Stick
diagrams identify the hyperfine lines from the two 27Al nuclei adjacent to the oxygen
vacancy. (a) Spectrum with both F+ and F+∗ centers. (b) Spectrum of only the F+

centers. (c) Spectrum of only the F+∗ centers.
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then held at 200 ◦C for 1 minute in a one-zone tube furnace. It was placed back into

the EPR spectrometer and cooled down to 100K where the EPR spectrum was taken

again. Figure 7.1(b) shows the spectrum obtained after the anneal is entirely due to

the F+ center. In order to identify the lines from the second oxygen-vacancy center,

Figure 7.1(b) was adjusted down in intensity until its highest-field line matched the

intensity of the highest-field line in Figure 7.1(a). Figure 7.1(b) was then subtracted

from Figure 7.1(a), producing the difference curve in Figure 7.1(c) which represents

the spectrum from the metastable F+∗ center. Both F+ and F+∗ centers are present

in Figure 7.1(a), but the F+∗ centers become thermally unstable below 200 ◦C. As

they become unstable they convert over to the more stable F+ centers, which are

seen to increase in intensity in Figure 7.1(b) from their intensity in Figure 7.1(a) by

the same amount as the F+∗ centers that were converted.

The oxygen ion in LiAlO2 is surrounded by two lithium and two aluminum ions.

In the normal lattice, each of these four neighbors has a slightly different distance to

the center of the oxygen ion. When the oxygen ion is missing, the lattice will undergo

relaxation that will alter the cation distances from the unrelaxed values, but they will

most likely remain unequal. For the paramagnetic vacancy, there will be an unequal

sharing of the unpaired electron among the four cations, with more spin density at

the Al3+ neighbors and less spin density at the Li+ neighbors. Since the two Al3+

ions have inequivalent positions relative to the center of the oxygen vacancy, they

will also have an unequal sharing of the spin density between them. In Figures 7.1(b)

and 7.1(c), the hyperfine structure from the larger interactions with the adjacent

27Al nuclei is easily resolved while no hyperfine structure is visible from the smaller

interactions with the 7Li nuclei as would be expected (the 27Al are 100% abundant

with I = 5/2 and the 7Li are 92.5% abundant with I = 3/2). The blue stick diagrams

with six lines in Figures 7.1(b) and 7.1(c) represent the hyperfine splitting from the
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larger of the two 27Al interactions (referred to in Figure 7.1 as the 1st 27Al hyperfine).

Each of the blue hyperfine-split lines is then further split into six red lines from the

smaller 27Al hyperfine interaction (referred to in Figure 7.1 as the 2nd 27Al hyperfine).

This results in 36 hyperfine lines from two 27Al interactions. There is some overlap

among these 27Al lines and a few are hidden by the three larger unrelated lines in the

middle of the spectra.

The EPR spectra of the F+ and F+∗ centers in Figures 7.1(b) and 7.1(c) were

found to be nearly isotropic, and therefore each spectrum can be described approxi-

mately by a constant g value and two hyperfine parameters, one for each 27Al neigh-

bor. A spin Hamiltonian with an electron Zeeman term and two hyperfine terms

was used to determine a set of values for these parameters for each center. The spin

Hamiltonian is given by

H = gµBŜ ·B+ A1Ŝ · Î1 + A2Ŝ · Î2 (7.1)

The comprehensive simulation software EasySpin was used to predict the positions

of individual EPR lines for this spin Hamiltonian (where S = 1/2, I1 = 5/2, and

I2 = 5/2) [144]. EasySpin converts the spin Hamiltonian in equation (7.1) to a 72×72

matrix and then performs a full diagonalization to obtain the energy levels. The input

data were initial estimates for the g value, A1 and A2, the microwave frequency, and

crystal structure data. The difference between the highest field line and the next two

lines converted into MHz were used as initial estimates for A1 and A2. The g value

and the hyperfine parameters were manually varied until a good fit was obtained.

The parameters that resulted from the fitting routine are given in Table 7.1. Figure

7.2 shows the result of the EasySpin simulation with the F+ EPR spectrum from

Figure 7.1(b). Each oxygen vacancy EPR spectra is slightly asymmetrical because

of second-order effects from the large hyperfine parameters. For example, in the F+
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Table 7.1. Spin-Hamiltonian parameters for the F+ and F+∗ centers in a neutron-
irradiated LiAlO2 crystal. These g and A values were obtained from the EPR spectra
in Figures 7.1(b) and 7.1(c), taken with the magnetic field along the [001] direction.
Estimates of uncertainties are ±0.0005 for the g values and ±2MHz for the A values.

F+ center F+∗ center

g 2.0030 2.0030

A1 for 1st 27Al hyperfine 310 MHz 258 MHz

A2 for 2nd 27Al hyperfine 240 MHz 182 MHz

center spectrum in Figure 7.1(b), the highest two lines near 379mT are separated by

8.62mT while the lowest two lines near 289mT are separated by 7.64mT.

For F+ centers in Al2O3 crystals, the measured g value is 2.0030 and the isotropic

portions of the hyperfine interactions are 147.0MHz for two of the 27Al neighbors and

29.8MHz for the other two 27Al neighbors [145]. Table 7.1 shows that the g values

for the F+ and F+∗ centers in lithium aluminate are the same as the g value of the

F+ center in Al2O3. The hyperfine interactions for the two 27Al neighbors of the

F+ and F+∗ centers in LiAlO2 are, however, about a factor of two larger than the

corresponding larger value for the F+ center in Al2O3. The differences in the 27Al

hyperfine parameters for the two materials may be related to the distances from the

center of the oxygen vacancy to the aluminum neighbors. The two closest Al3+ ions

in Al2O3 are 1.855 Å from the vacant oxygen site while the Al3+ ions in LiAlO2 are

1.755 and 1.766 Å from the vacancy. This smaller distance in LiAlO2 is consistent

with a larger unpaired spin density on the two Al3+ ions.

A possible explanation for the existence of two oxygen vacancy centers is unequal

sharing of the unpaired spin density by the two 27Al ions adjacent to the oxygen

vacancy. The EPR spectra in Figures 7.1(b) and 7.1(c) do not provide information

about which of the two Al3+ ions has the greater spin density, nor do they provide
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Figure 7.2. EasySpin simulation spectra with F+ center EPR spectra from Figure
7.1(b). The parameters in Table 7.1 were obtained from the fit.

information about the relative lattice relaxations of the two ions. It is reasonable to

assume, however, that the Al3+ ion that has a larger spin density in the F+ center

will have a smaller spin density in the F+∗ center and vice versa, which then gives

rise to two distinct distributions of the unpaired spin density for the singly ionized

oxygen vacancies. Each of these configurations (i.e., the F+ and F+∗ centers) will be

accompanied by its unique relaxation of the two Al3+ ions in the surrounding lattice.

Presumably, the F+ center minimum energy configuration is less than the F+∗ center

minimum energy configuration, and their potential wells are separated by a potential

barrier. When the F+∗ has sufficient energy to overcome this barrier, it is then able to

convert to F+ centers. Kurtz et al reported the EPR spectra of the F+ center of Na,

K, and Li-doped β-alumina after irradiation with 1.5MeV electrons in 1981 [146].

They only observed one type of F+ center with Na and K dopants, but reported

seeing two types of F+ centers with Li-doped β-alumina. Coupled with the fact

that only one type of F+ center has been reported in neutron-irradiated Al2O3 [147],
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these previously reported results would provide some circumstantial evidence that

the presence of lithium may also be required for the metastable F+∗ center to exist.

7.2.2 The Aluminum Vacancy.

Figure 7.3. EPR spectrum from a a neutron-irradiated LiAlO2 crystal, taken at 36K
and with high microwave power. The set of six equally spaced lines are assigned to
doubly ionized aluminum vacancies. The X1 and X2 signals have not been identified.

The EPR signals that were off-scale in the middle of the spectra in Figure 7.1 can

be seen more clearly in Figure 7.3. Figure 7.3 was obtained from the sample that was

irradiated for 3 hours with the magnetic field along the [001] direction, a temperature

of 36K, and with a microwave power of 2mW. There are at least three distinct
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defects, and possibly more, contributing to the EPR spectrum in Figure 7.3. Neutron

irradiation can produce several types of point defects such as paramagnetic aggregates

of vacancies (e.g., dimers, and trimers, etc.) in addition to isolated vacancies. Also,

interstitial ions may be contributing to one or more of the observed spectra. In Figure

7.3, a set of six equally spaced lines can easily been seen and identified with the blue

stick diagram above the spectrum. This six-line EPR spectrum is assigned to a doubly

ionized aluminum vacancy (V 2−
Al , S = 1/2) produced during the neutron irradiation.

In this defect, a hole is trapped on an oxygen ion adjacent to the aluminum vacancy.

There was little angular dependence observed for the six-line spectrum. This would

indicate that the trapped hole may be rapidly hopping among all four of the oxygen

ions that surround an aluminum vacancy instead of being localized on only one of the

neighboring oxygen ions. The holelike g value of 2.019 and a 27Al hyperfine splitting

parameter of 1.09mT would also indicate a vacancy assignment. These values are

very similar to the g and 27Al hyperfine parameters of the 11-line trapped hole EPR

spectrum discussed in Chapter 4. The other EPR lines in Figure 7.3 have not been

identified with any defect. This includes the single intense line, labeled X1 located

near 335mT and the set of lines, labeled X2, that extend from 324.5mT to possibly

near 335mT. A line at low field near 322mT, and a line at high field near 337.5mT,

also remain unidentified.

The 11-line trapped hole EPR spectrum is not present in the neutron-irradiated

LiAlO2 spectrum of Figure 7.3. In order to eliminate the possibility that the temper-

ature at the sample during irradiation was hot enough to have inadvertently annealed

out the 11-line spectrum, the neutron-irradiated sample was subsequently irradiated

with x rays at room temperature. The 11-line EPR signal still did not appear after

the x ray irradiation. Thus, there appear to be no, or very few, isolated lithium

vacancies in a neutron-irradiated lithium aluminate crystal, even though large con-
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centrations of lithium vacancies are known to be present in as-grown crystals. One

possible explanation for the absence of the 11-line spectrum is the trapping of oxygen

interstitials by lithium vacancies, which was suggested to have occurred in MgO [143].

Once a lithium vacancy has trapped an oxygen interstitial, it can no longer serve as a

simple hole trap. This theory is supported by the fact that after a neutron-irradiated

LiAlO2 crystal is heated to 600 ◦C, and exposed to x rays at room temperature, the

11-line trapped hole EPR spectrum is once again the primary defect visible. This

would indicate that the heating allowed the oxygen interstitials to recombine with

oxygen vacancies, which frees up the lithium vacancies to once again trap holes on

adjacent oxygen ions as discussed in Chapter 4.

7.3 Optical Absorption Results

Figure 7.4 shows the optical absorption spectrum (blue curve) of the LiAlO2 crys-

tal taken at room temperature after a 3 hour irradiation with neutrons. Unpolarized

light propagated along the [001] direction in the crystal and the path length (i.e.,

thickness) was 0.5mm. The primary band in Figure 7.4 has a peak near 238 nm

(5.21 eV) and is assigned to F+ centers. This 238 nm absorption peak was initially

observed by Auvray-Gely et al in LiAlO2 crystals irradiated with high-energy elec-

trons [94]. Katsui et al also observed this peak after irradiating a LiAlO2 single

crystal with deuterons (D+
2 ) [106]. Evidence that the 238 nm optical absorption band

is due to F+ centers is provided by the thermal annealing results reported in Section

7.4.

As shown in Figure 4.8, there are no absorption bands in the 200− 300 nm region

in an as-grown crystal. Also, the 238 nm absorption peak does not appear after x ray

irradiation at room temperature of an as-grown crystal (the x rays are unable to create

oxygen vacancies through a direct momentum-conserving displacement mechanism
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Figure 7.4. Room-temperature optical absorption spectra of a LiAlO2 crystal. The blue
curve was taken after the neutron irradiation. The red curve was taken after exposing
the irradiated crystal to a Hg lamp. The F+ band peaks near 238nm and the F band
peaks near 272nm.

and would only be able to change the charge state of pre-existing oxygen vacancies).

The lack of a 238 nm absorption band would indicate that there are very few, if any,

oxygen vacancies initially present in Czochralski-grown LiAlO2 crystals. The lack of

an observable x ray-induced F+ center EPR spectrum before neutron irradiation also

supports the absence of oxygen vacancies in the as-grown crystals. These results taken

together establish that the oxygen vacancies represented by the EPR spectra in Figure

7.1 and the 238 nm absorption band in Figure 7.4 were produced by displacement

events initiated by high-energy neutrons.

There is a weak shoulder near 272 nm (4.56 nm) on the low energy side of the

primary absorption band taken after neutron irradiation in Figure 7.4 (blue curve).

If a neutron irradiated LiAlO2 crystal is exposed to a low-intensity Hg lamp, the main
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238 nm absorption band is reduced and the absorption band at 272 nm is enhanced as

shown for the red curve in Figure 7.4. The most likely explanation is that light from

the Hg lamp releases electrons from unidentified traps (Fe+ or other transition-metal

ions). The released electrons are then trapped by F+ centers, which then become

F centers (an oxygen vacancy with two trapped electrons). The broad, less intense,

absorption band peaking near 272 nm in the red curve in Figure 7.4 is assigned to

the F center. In both CaO and SrO crystals, the F center optical absorption band

occurs at a lower energy than the F+ center absorption band [148,149]. The portion

of F+ centers that are converted to F centers in LiAlO2 by the Hg lamp is controlled

by the number and types of electron traps present. After using light from the Hg

lamp to increase the intensity of the 272 nm absorption band, exposing the crystal at

room temperature to 325 nm light from a He-Cd laser decreased the intensity of the

272 nm band.

A value for the oscillator strength f of the F+ band can be determined by com-

bining the EPR and optical absorption results from the same sample. The oscillator

strength is a characteristic parameter of a defect that is related to the probability

that an optical transition will result in absorption. Smakula’s equation, in the form

appropriate for a Gaussian-shaped band, can be used to calculate f [150]. It is given

by

Nf = (0.87× 1017)
n

(n2 + 2)2
αmaxW (7.2)

where N is the concentration of absorbing species, n is the index of refraction at a

given peak position, αmax is the absorption coefficient of the peak height, and W is

the full width at half maximum of the absorption peak. N was determined to be

1.1× 10−19cm−3 from Figure 7.1 and equation (3.2). If the baseline of the absorption

band for the blue curve in Figure 7.4 is not zero but increases with energy, then the

absorption coefficient αmax at the peak is approximately 135 cm−1 and W is 0.90 eV.
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The index of refraction at the peak is approximately 1.65 [37]. Substituting these

quantities into equation (7.2) gives an oscillator strength of 0.07 for the 238 nm F+

center absorption band in LiAlO2 crystals.

7.4 Thermal Stability of the F+ Center

Figure 7.5. Thermal stability of the 238nm optical absorption band assigned to F+

centers. The sample was held at each temperature for 1 minute and then returned to
room temperature where the absorption spectrum was recorded.

A thermal anneal study was performed on the LiAlO2 crystal that had been irra-

diated with neutrons for 3 hours. Both the EPR spectra of the F+ centers and the

238 nm optical absorption band were monitored. In these experiments, the crystal

was held for 1 minute at a series of progressively higher temperatures. After each

anneal step, the crystal was returned to room temperature where the optical absorp-

tion spectrum was taken, and then cooled to 100K where the EPR spectrum was
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Figure 7.6. Correlation of the thermal decay of the 238nm optical absorption band and
the EPR spectra representing the F+ and F+∗ centers. During the first annealing step,
the F+ and F+∗ centers are both present (as indicated by the dashed green and dark
red lines). The blue curve represents the total number of F+ and F+∗ centers.

taken. Figure 7.5 illustrates how the intensity of the 238 nm optical absorption band

decreases with increasing temperature. Figure 7.6 shows the excellent correlation of

the optical absorption peak and EPR intensities as a function of annealing temper-

ature, which confirms that these spectra have a common origin. The temperature

where half of the F+ centers have thermally decayed is approximately 425 ◦C.

In Figure 7.6, the blue curve represents the combined F+ and F+∗ intensities.

At the beginning of the thermal anneal (i.e., at room temperature), both F+ and

F+∗ centers are present in the EPR spectrum. Both of these defects are also present

after the 100 ◦C anneal step. After the 200 ◦C anneal step, the F+∗ centers have

disappeared and the intensity of the F+ center EPR spectrum has increased by the

amount the F+∗ spectrum decreased. These effects are illustrated by the dashed lines

(green and dark red) in Figure 7.6 and also by the EPR spectra in Figure 7.1. As
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described in subsection 7.2.1, this thermally induced conversion of F+∗ centers to

F+ centers strongly suggests that the F+∗ centers are a metastable state of the F+

centers.

7.5 PL and PLE of the F Center

Figure 7.7. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra
obtained from a neutron-irradiated LiAlO2 crystal. The responsible defect is the F
center.

Figure 7.7 shows the PL and PLE spectra taken at room temperature from the

LiAlO2 crystal irradiated for 3 hours with neutrons. The emission band was obtained

using an excitation wavelength of 300 nm. It peaks at 411 nm (3.02 eV) and has a

full width at half maximum (FWHM) of 0.36 eV. The related excitation band was

obtained by monitoring the emission at 410 nm. This PLE band peaks near 277 nm

(4.48 eV) and has a FWHM of 0.57 eV. The resulting Stoke’s shift of 1.46 eV is
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large. Before recording the spectra in Figure 7.7, the crystal was held at 300 ◦C

for 1 minute. Heating to 300 ◦C destroyed defect aggregates that were contributing

interfering spectra to the emission and excitation, thereby allowing “clean” PL and

PLE spectra to be obtained. The PLE and PL spectrum have been corrected to

account for variations in excitation lamp output, detection system response, and

wavelength to energy conversions. The PL peak position shifts to 416 nm (2.98 eV)

after these corrections are applied. These corrections are explained in detail in [151].

Comparison of the PLE band in Figure 7.7 with the optical absorption spectra in

Figure 7.4 shows that the PLE band does not coincide with the F+ center absorption

band (blue spectrum in Figure 7.4) peaking at 238 nm. This lack of correlation

eliminates the F+ center as the defect responsible for the PL band. The peak of the

PLE spectrum is, however, close to the peak of the F center band that appears as a

shoulder of the F+ absorption band when the crystal is exposed to the Hg lamp (red

spectrum in Figure 7.4). The difference between the peak of the PLE band and the

peak of the F center band is small (272 vs 277 nm). This small difference is believed

to be experimental and arises from the difficulty in identifying the peak position of

the F center absorption band in Figure 7.4 and also in correcting the PLE spectrum

for variations in excitation lamp intensity. This suggests that the PLE and optical

absorption bands have a common origin, and allows an assignment of the PL and

PLE spectra in Figure 7.7 to F centers.

There does not appear to be an emission band at room temperature associated

with the F+ center absorption band at 238 nm. Repeated attempts using excitations

wavelengths between 235 and 250 nm failed to find any PL emission bands, other than

the 411 nm band in Figure 7.7, from a neutron-irradiated crystal. Also, a preliminary

search with a crystal at 77K did not reveal any new PL band. The absence of

a luminescence band associated with the F+ centers in LiAlO2 can be explained
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using the phenomenological model of Bartram and Stoneham [152]. They noted that

emission is expected to be quenched when the cross-over point of the excited state

and ground state curves in a two-state configuration-coordinate diagram occurs below

the energy reached in absorption. Their empirical relationships, based on the phonon

energies and relative ionic radii, suggest that emission should not be expected from

the F+ centers in lithium aluminate crystals.
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VIII. Summary and Conclusion

Ionizing and particle-irradiation induced point defects in LiAlO2 have been aggres-

sively identified and characterized. Large numbers of lithium vacancies are present

in as-grown lithium aluminate single crystals that serve as hole traps after exposure

to ionizing radiation. An oxygen ion adjacent to a lithium vacancy will trap a hole,

creating an O− paramagnetic defect. This defect has an equal hyperfine interaction

with the two adjacent 27Al ions and produces an intense 11-line EPR spectra cen-

tered around 332mT. These trapped-hole defects become thermally unstable around

105 ◦C; they release their holes which recombine with trapped electrons at transition-

metal ions and are responsible for a thermoluminescence peak centered at 105 ◦C.

Iron serves as the primary transition-metal impurity in as-grown LiAlO2. Fe2+

replaces Li+ during growth and serves as an electron trap under ionizing radiation.

When Fe2+ traps an electron and converts to Fe+, a very intense single EPR line

becomes visible centered at 141.5mT. The Fe+ also induces broad optical absorption

centered around 379 nm that is not present prior to exposure to ionizing radiation.

Fe+ is the trapped-electron defect that participates in thermoluminescence by serving

as the primary electron-hole recombination site.

Copper-LiAlO2 has the potential to serve as an excellent OSL dosimeter. After

diffusing copper into LiAlO2 crystals at high temperatures, an intense optical ab-

sorption band is produced centered at 277 nm. This peak has the same origin as a

PLE band at 273 nm, which is the Cu+ 3d10 → 3d94s1 transition. During the dif-

fusion process, copper ions replace Li+ ions in LiAlO2 creating the PLE and optical

absorption bands. A PL band at 359 nm is associated with the PLE band. After

exposure to ionizing radiation, some of the Cu+ is converted into Cu2+ by trapping

a hole on an adjacent oxygen ion. This gives rise to two Cu2+ EPR spectra, one

spectrum from isolated Cu2+ (with no lithium vacancies nearby), and one from Cu2+
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adjacent to a lithium vacancy. The isolated Cu2+ participates in the OSL response

of copper-diffused LiAlO2, by trapping electrons released from Fe+ after exposure to

425 nm excitation light. A strong OSL signal is produced from the recombination of

electrons and holes that occurs at the Cu2+ site.

During exposure to neutron irradiation, three distinct EPR spectra from oxygen

and aluminum vacancies are observed. The singly-ionized oxygen vacancy EPR spec-

tra shows 36 lines arising from inequivalent hyperfine interactions and spin density

sharing among the two 27Al ions adjacent to the oxygen vacancy. There are two

types of oxygen vacancy signals, a stable (F+ center) and a metastable (F+∗ center)

state. The metastable state becomes thermally unstable around 200 ◦C and converts

over to the stable state. An intense optical absorption peak appears at 238 nm that

is thermally correlated with the intensities of the oxygen vacancy EPR signals. An

excitation band peaking near 277 nm and an emission band peaking near 411 nm are

caused by the neutral oxygen vacancy (F center). No excitation band or emission

band associated with either F+ center state has been detected.

LiAlO2 is a very promising material for neutron scintillation, OSL radiation dosime-

try, and as a tritium breeding material. A thorough understanding of point defect

behavior in this material after exposure to ionizing and neutron irradiation is crucial

for nuclear application optimization. This dissertation has contributed to a thorough

and in-depth understanding of the fundamental physics occurring in lithium alumi-

nate single crystals under ionizing and neutron irradiation. A suggestion for future

work would be to study the behavior of hydrogen and tritium in LiAlO2. The cur-

rent research focus on tritium breeding blankets has been primarily concerned with

measuring the rate of tritium release and mechanical properties of lithium ternary

oxides [138,153,154]. The rate of recovery of tritium cannot be adequately explained

without understanding how tritium interacts with the surrounding lattice and only
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EPR can truly provide such insight.

A useful EPR experiment would start with neutron-irradiating a single crystal of

LiAlO2 long enough so that the amount of tritium produced in the sample would

exceed the 5× 1010 cm−3 minimum spin threshold for EPR detectability. If an EPR

signal from tritium were identified in the sample, it could be characterized with the

same techniques used in the previous chapters. Measurements of the angular depen-

dence and thermal stability of the EPR signal could determine where tritium sits in

the crystal lattice (e.g., on a lithium site or forming an OH with an oxygen), as well as

if any correlation exists with the F+ center and the aluminum vacancy. It would be

useful in such an experiment to have samples that have received multiple doses, and

samples that have been shielded from high energy neutrons with those that have not.

Samples that receive only thermal neutrons would contain tritium but little displace-

ment damage versus those exposed to fast and thermal neutrons. If the behavior of

tritium release can be understood in the absence of other neutron-generated defects,

that may facilitate a better understanding of tritium release behavior when oxygen

and aluminum vacancies are present. Understanding those factors could explain why

tritium is released from neutron-irradiated lithium compounds at a given rate and

how to optimize the rate of release.

Another future area of research is to study point defects and optical properties of

LiAlO2 doped with other compounds. Some optical measurements have been carried

out on LiAlO2 doped with Cr, Mn, Ce, Tb, Eu, and Ti but an exploration of point

defects in these materials has been inadequate [5,26,100–102]. So far, only speculation

concerning point defect behavior and suspect EPR assignments from polycrystalline

samples currently exist. A good EPR experiment would involve single crystals of

LiAlO2 doped with different light emitting elements and to multiple dopant levels.

Many of these elements have characteristic hyperfine splitting that would aid in the
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identification of any associated EPR signals, which could then be characterized and

correlated with any observed optical properties such as thermoluminescence or OSL.

116



Bibliography

1. X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zu-
jie, “γ-LiAlO2 single crystal: a novel substrate for GaN epitaxy,” Journal of
Crystal Growth, vol. 193, no. 1-2, pp. 127–132, September 1998.

2. Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar,
and K. H. Ploog, “Impact of nucleation conditions on the sructural and optical
properties of M-plane GaN (11̄00) grown on γ-LiAlO2,” Journal of Applied
Physics, vol. 92, no. 10, pp. 5714–5719, November 2002.

3. K. Munkata, Y. Yokoyama, A. Baba, T. Kawagoe, T. Takeishi, M. Nishikawa,
R. D. Penzhorn, H. Moriyma, K. Kawamoto, Y. Morimoto, and K. Okuno, “Tri-
tium release from catalytic breeder materials,” Fusion Engineering and Design,
vol. 58-59, pp. 683–687, November 2001.

4. M. Oyaidzu, T. Takeda, H. Kimura, A. Yoshikawa, M. Okada, K. Munakata,
M. Nishikawa, and K. Okuno, “Correlation between annihilation of radiation
defects and tritium release in neutron-irradiated LiAlO2,” Fusion Science and
Technology, vol. 48, no. 1, pp. 638–641, July 2005.

5. J. Pejchal, Y. Fujimoto, V. Chani, F. Moretti, T. Yanagida, M. Nikl, Y. Yokota,
A. Beitlerova, A. Vedda, and A. Yoshikawa, “Crystal growth and lumines-
cence properties of Ti-doped LiAlO2 for neutron scintillator,” Journal of Crystal
Growth, vol. 318, no. 1, pp. 828–832, March 2011.

6. Y. Fujimoto, K. Kamada, T. Yanagida, N. Kawaguchi, S. Kurosawa, D. Tot-
suka, K. Fukuda, K. Watanabe, A. Yamazaki, Y. Yokota, and A. Yoshikawa,
“Lithium Aluminate Crystals as Scintillator for Thermal Neutron Detection,”
IEEE Transactions on Nuclear Science, vol. 59, no. 5, pp. 2252–2255, October
2012.

7. J. I. Lee, A. S. Pradhan, J. L. Kim, I. Chang, B. H. Kim, and K. S. Chung, “Pre-
liminary study on development and characterization of high sensitivity LiAlO2

optically stimulated luminescence material,” Radiation Measurements, vol. 47,
no. 9, pp. 837–840, September 2012.

8. ——, “Characteristics of LiAlO2 - Radioluminescence and optically stimulated
luminescence,” Radiation Measurements, vol. 56, pp. 217–222, 2013.

9. A. Twardak, P. Bilski, B. Marczewska, and W. Gieszcyk, “Analysis of TL and
OSL kinetics of lithium aluminate,” Radiation Measurements, vol. 71, pp. 143–
147, December 2014.

117



10. A. Twardak, P. Bilski, B. Marczewska, J. I. Lee, J. L. Kim, W. Gieszcyk,
A. Mrozik, M. Sadel, and D. Wrobel, “Properties of lithium aluminate for ap-
plication as an OSL dosimeter,” Radiation Physics and Chemistry, vol. 104, pp.
76–79, November 2014.

11. K. S. Krane, Introductory Nuclear Physics. John Wiley & Sons, Inc., 1988,
section 14.1.

12. ITER. (2014) Tritium breeding. ITER. [Online]. Available: http://www.iter.
org/mach/TritiumBreeding

13. H. Nakaya, H. Matsuura, Y. Nakao, S. Shimakawa, M. Goto, S. Nakagawa,
and M. Nishikawa, “Core configuration of a gas-cooled reactor as a tritium
production device for fusion reactor,” Nuclear Engineering and Design, vol. 271,
pp. 505–209, May 2014.

14. Department of Homeland Security. About the domestic nuclear detection office.
Department of Homeland Security. [Online]. Available: http://www.dhs.gov/
about-domestic-nuclear-detection-office

15. J. P. McKelvey, Solid State Physics. Krieger Publishing Company, 1993, chapter
9.

16. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, chapter 5.

17. G. F. Knoll, Radiation Detection and Measurement, 4th ed. John Wiley &
Sons, Inc., 2010, section 8.II.A.

18. C. W. E. van Eijk, “Inorganic scintillator for thermal neutron detection,” Radi-
ation Measurements, vol. 38, no. 4-6, pp. 337–342, August-December 2004.

19. G. W. Hollenberg, “Fast Neutron Irradiation Results on Li2O, Li4SiO4, Li2ZrO3

and LiAlO2,” Journal of Nuclear Materials, vol. 123, pp. 896–900, May 1984.

20. J. L. Ethridge, D. E. Baker, and A. D. Miller, “Effects of Fast Neutron Irradi-
ation on Thermal Conductivity of Li2O and LiAlO2,” Journal of the American
Ceramic Society, vol. 71, no. 6, pp. C294–C296, June 1988.

21. F. Agullo-Lopez, C. R. A. Catlow, and P. D. Townsend, Point Defects in Mate-
rials. Academic Press, 1988.

22. F. Seitz, “Color Centers in Alkali Halide Crystals,” Reviews of Modern Physics,
vol. 18, no. 3, pp. 384–408, July 1946.

23. T. E. Mitchell and A. H. Heuer, “Solution Hardening by Aliovalent Cations in
Ionic Crystals,” Materials Science and Engineering, vol. 28, no. 1, pp. 81–97,
April 1977.

118



24. M. H. Auvray-Gely and A. Dunlop, “Defect Production by X- and Gamma-Rays
in Gamma Lithium Aluminate,” Nuclear Instruments & Methods in Physics
Research B, vol. 32, pp. 23–27, May 1988.

25. M. H. Auvray-Gely, A. Perez, and A. Dunlop, “Electron paramagnetic resonance
and optical absorption studies of irradiated lithium aluminate,” Philosophical
Magazine Part B, vol. 57, no. 2, pp. 137–148, 1988.

26. M. Yamaga, J. P. R. Wells, M. Honda, T. P. J. Han, and B. Henderson, “In-
vestigation on the valence of Cr ions in LiAlO2,” Journal of Luminescence, vol.
108, no. 1-4, pp. 313–317, June 2004.

27. Diamond 3.0 software. Crystal Impact. [Online]. Available: http://www.
crystalimpact.com/diamond/Default.htm

28. M. M. Chou, H. C. Huang, D.-S. Gan, and C. W. Hsu, “Defect characterizations
of γ-LiAlO2 single crystals,” Journal of Crystal Growth, vol. 291, no. 2, pp. 485–
490, June 2006.

29. M. Marezio and J. P. Remeika, “High-Pressure Synthesis and Crystal Structure
of α-LiAlO2,” The Journal of Chemical Physics, vol. 44, no. 8, pp. 3143–3144,
April 1966.

30. C. H. Chang and J. L. Margrave, “High-Pressure-High-Temperature Syntheses.
III. Direct Syntheses of New High-Pressure Forms of LiAlO2 and LiGaO2 and
Polymorphism in LiMO2 Compounds (M=B, Al, Ga),” Journal of the American
Chemical Society, vol. 90, no. 8, pp. 2020–2022, April 1968.

31. A. K. Fischer, “Atmospheric Pressure Synthesis for β-LiAlO2,” Inorganic Chem-
istry, vol. 16, no. 4, pp. 974–974, April 1977.

32. T. Hahn, Ed., International Tables for Crystallography: Brief Teaching Edition
of Volume A, 5th ed., ser. Space-Group Symmetry. John Wiley & Sons, Ltd,
2010, p. 128.

33. M. Marezio, “The Crystal Structure and Anomalous Dispersion of γ-LiAlO2,”
Acta Crystallographica, vol. 19, no. 3, pp. 396–400, September 1965.

34. S. Indris and P. Heitjans, “Local electronic structure in a LiAlO2 single crystal
studied with 7Li NMR spectroscopy and comparison with quantum chemical
calculations,” Physical Review B, vol. 74, no. 24, p. 5120, December 2006.

35. S. Q. Wu, Z. F. Hou, and Z. Z. Zhu, “First-principles study on the structural,
elastic, and electronic properties of γ-LiAlO2,” Computational Materials Sci-
ence, vol. 46, no. 1, pp. 221–224, July 2009.

119



36. T. Huang, S. Zhou, H. Teng, H. Lin, J. Zou, J. Zhou, and J. Wang, “Growth and
Characterization of High-quality LiAlO2 Single Crystal,” Journal of Materials
Science & Technology, vol. 24, no. 2, pp. 145–148, March 2008.

37. B. Cockayne and B. Lent, “The Czochralski Growth of Single Crystal Lithium
Aluminate, LiAlO2,” Journal of Crystal Growth, vol. 54, no. 3, pp. 546–550,
September 1981.

38. B. Velickov, A. Mogilatenko, R. Bertram, D. Klimm, R. Uecker, W. Neumann,
and R. Fornari, “Effects of the Li-evaporation on the Czochralski growth of
γ-LiAlO2,” Journal of Crystal Growth, vol. 310, no. 1, pp. 214–220, January
2008.

39. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. Wiley-VCH
Verlag GmbH & Co. KGaA, 2005, vol. 1 and 2, chapter IX.

40. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007, p.
15.

41. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition
Ions. Oxford University Press, 1970, p. 3.

42. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
figure 1.9.

43. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. Wiley-VCH
Verlag GmbH & Co. KGaA, 2005, vol. 1 and 2, p. 971.

44. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
figure 1.8.

45. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, p. 21-23.

46. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, table E.1.

47. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, p. 21.

48. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, p. 525.

120



49. J.-M. Spaeth and H. Overhof, Point Defects in Semiconductors and Insulators,
ser. Springer Series in Materials Science, R. M. O. Jr., R. Hull, and J. Parisi,
Eds. Springer-Verlag, 2003, vol. 51, p. 35.

50. ——, Point Defects in Semiconductors and Insulators, ser. Springer Series in
Materials Science, R. M. O. Jr., R. Hull, and J. Parisi, Eds. Springer-Verlag,
2003, vol. 51, p. 45-47.

51. ——, Point Defects in Semiconductors and Insulators, ser. Springer Series in
Materials Science, R. M. O. Jr., R. Hull, and J. Parisi, Eds. Springer-Verlag,
2003, vol. 51, p. 46.

52. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
chapter 12.

53. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, section
9.2.

54. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. Wiley-VCH
Verlag GmbH & Co. KGaA, 2005, vol. 1 and 2, p. 1279.

55. R. Pappalardo, “Absorption Spectra of Cu2+ in Different Crystal Coordina-
tions,” Journal of Molecular Spectroscopy, vol. 6, pp. 554–571, 1961.

56. H. A. Weakliem, “Optical Spectra of Ni2+, Co2+, and Cu2+ in Tetrahedral Sites
in Crystals,” The Journal of Chemical Physics, vol. 36, no. 8, pp. 2117–2140,
April 1962.

57. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, figure 9.1.

58. ——, Optical Properties of Solids. Oxford University Press, 2010, section 9.1.

59. D. S. McClure, Electronic Spectra of Molecules and Ions in Crystals. New York,
New York: Academic Press, 1959, p. 88.

60. ——, Electronic Spectra of Molecules and Ions in Crystals. New York, New
York: Academic Press, 1959, p. 50, p. 92.

61. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics. Wiley-VCH
Verlag GmbH & Co. KGaA, 2005, vol. 1 and 2, p. 67.

62. D. O. O’Connell, B. Henderson, and J. M. Bolton, “Unixial Stress and Polarisa-
tion Studies of F2 Centre Luminescence in MgO,” Solid State Communications,
vol. 38, no. 4, pp. 283–285, April 1981.

63. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, p. 3.

121



64. C. Furetta, “Thermoluminescence,” Rivista Del Nuovo Cimento, vol. 21, no. 2,
pp. 1–62, February 1998.

65. ——, “Review-Models in thermoluminescence,” Journal of Materials Science,
vol. 39, no. 7, pp. 2277–2294, April 2004.

66. A. J. J. Bos, “Theory of Thermoluminescence,” Radiation Measurements,
vol. 41, no. S1, pp. S45–S56, December 2006.

67. R. C. DuVarney, A. K. Garrison, and R. H. Thorland, “Electron Paramagnetic
and Nuclear Double Resonance of F+ Centers in BeO Single Crystals,” Physical
Review, vol. 188, no. 2, pp. 657–661, December 1969.

68. Y. Chen and M. M. Abraham, “Trapped-Hole Centers in Alkaline-Earth Ox-
ides,” Journal of Physics and Chemistry of Solids, vol. 51, no. 7, pp. 747–764,
1990.

69. S. McKeever, Thermoluminescence of solids. The Pitt Building, Trumpington
Street, Cambridge CB2 1RP: Cambridge University Press, 1985, chapter 3.

70. E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: Opti-
cally stimulated luminescence dosimetry-Frontiers of future reasearch,” Radia-
tion Measurements, vol. 71, pp. 15–24, December 2014.

71. L. Oster, S. Druzhyna, and Y. S. Horowitz, “Optically stimulated luminescence
in LiF:Mg,Ti: Application to solid-state radiation dosimetry,” Nuclear Instru-
ments and Methods in Physics Research A, vol. 648, no. 1, p. 261, August 2011.

72. S. W. S. McKeever, “Optically stimulated luminescence dosimetry,” Nuclear
Instruments and Methods in Physics Research B, vol. 184, no. 1-2, pp. 29–54,
September 2001.

73. Bruker BioSpin Corp, EMX Series User’s Manual, manual version 1.1. ed., 2009.

74. Wikipedia. (2014, January) Gunn diode. [Online]. Available: http://en.
wikipedia.org/wiki/Gunn diode

75. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
section E.2.2.

76. Wikipedia. (2014, September) Schottky diode. [Online]. Available: http://en.
wikipedia.org/wiki/Schottky diode

77. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
figure E.6.

122



78. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, p. 525-529.

79. Private Communication with L. E. Halliburton.

80. Photron. (2014, October) Deuterium lamps. [Online]. Available: http://www.
photron.com.au/.assets/brochures/deuterium lamp.pdf

81. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, p. 4.

82. G. F. Knoll, Radiation Detection and Measurement, 4th ed. John Wiley &
Sons, Inc., 2010, chapter 9.

83. O. F. Schirmer, “O− bound small polarons in oxide materials,” Journal of
Physics: Condensed Matter, vol. 18, no. 43, pp. R667–R704, November 2006.

84. “MTI Corporation,” February 2014. [Online]. Available: http://www.mtixtl.
com/

85. J.-M. Spaeth and H. Overhof, Point Defects in Semiconductors and Insulators,
ser. Springer Series in Materials Science, R. M. O. Jr., R. Hull, and J. Parisi,
Eds. Springer-Verlag, 2003, vol. 51, chapter 3.6.

86. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
section 4.4.

87. D. A. Buchanan, “EPR and ENDOR Studies of Point Defects in Lithium Tetrab-
orate Crystals,” Ph.D. dissertation, Air Force Institute of Technology, Wright-
Patterson Air Force Base, OH, November 2012, appendix B.

88. R. T. Cox, “Electron Spin Resonance Studies of Holes Trapped at Mg2+, Li+

and Cation Vacancies in Al2O3,” Solid State Communications, vol. 9, no. 22,
pp. 1989–1992, November 1971.

89. R. H. D. Nuttall and J. A. Weil, “The magnetic properties of the oxygen-hole
aluminum centers in crystalline SiO2. I. [AlO4]

0,” Canadian Journal of Physics,
vol. 59, no. 11, pp. 1696–1708, November 1981.

90. O. F. Schirmer, “The structure of the paramagnetic lithium center in zinc oxide
and beryllium oxide,” Journal of the Physics and Chemistry of Solids, vol. 29,
no. 8, pp. 1407–1429, August 1968.

91. M. W. Swinney, J. W. McClory, J. C. Petrosky, S. Yang, A. T. Brant, V. T.
Adamiv, Y. V. Burak, P. A. Dowben, and L. E. Halliburton, “Identification
of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen
vacancies and lithium vacancies,” Journal of Applied Physics, vol. 107, no. 11,
p. 9, June 2010.

123



92. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007, p.
105-110.

93. R. H. Bartram, C. E. Swenberg, and J. T. Fournier, “Theory of Trapped-Hole
Centers in Aluminum Oxide,” Physical Review, vol. 139, no. 3A, pp. A941–A951,
August 1965.

94. M. H. Auvray-Gely, A. Perez, and A. Dunlop, “Optical Absorption Study of
Irradiation Damage in γ-LiAlO2,” Crystal Lattice Defects and Amorphous Ma-
terials, vol. 17, pp. 119–125, 1987.

95. Y. Asaoka, H. Moriyama, K. Iwasaki, K. Moritani, and Y. Ito, “In-situ lumines-
ence measurement of lithium aluminate under ion beam irradiation,” Journal of
Nuclear Materials, vol. 191-194 Part A, pp. 268–271, September 1992.

96. S. Kuck and S. Hartung, “Comparative study of the spectroscopic properties of
Cr4+-doped LiAlO2 and LiGaO2,” Chemical Physics, vol. 240, no. 3, pp. 387–
401, January 1999.

97. G. A. Waychunas and G. R. Rossman, “Spectroscopic Standard for Tetrahedrally
Coordinated Ferric Iron: γ LiAlO2:Fe

3+,” Physica and Chemistry of Minerals,
vol. 9, no. 5, pp. 212–215, May 1983.

98. T. Kutty and M. Nayak, “Cation Coordination and Fe3+ Luminescence in
LiAlO2 Polymorphs Prepared by a Hydrothermal Method,” Materials Research
Bulletin, vol. 34, no. 2, pp. 249–262, January 1999.

99. N. Suriyamurthy, B. S. Panigrahi, and A. Natarajan, “Luminescence study of
iron doped lithium aluminate phosphor,” Materials Science and Engineering A,
vol. 403, no. 1-2, pp. 182–185, Augsut 2005.

100. B. Dhabekar, E. A. Raja, S. Menon, T. K. G. Rao, R. K. Kher, and B. C. Bhatt,
“Identification of defect centres using TSL, PL, OSL and ESR studies in LiAlO2

based phosphors,” Journal of Physics D: Applied Physics, vol. 41, no. 11, pp.
1–6, June 2008.

101. M. G. Brik, H. Teng, H. Lin, S. Zhou, and N. M. Avram, “Spectroscopic and
crystal field studies of LiAlO2:Mn2+ single crystals,” Journal of Alloys and Com-
pounds, vol. 506, no. 1, pp. 4–9, September 2010.

102. X. Yang, G. Ning, X. Li, and Y. Lin, “Synthesis and luminescence properties of
a novel Eu3+-doped γ-LiAlO2 phosphor,” Materials Letters, vol. 61, no. 25, pp.
4694–4696, October 2007.

103. M. Fox, Optical Properties of Solids. Oxford University Press, 2010, p. 366,
Problem 1.13.

124



104. ——, Optical Properties of Solids. Oxford University Press, 2010, problem 2.13.

105. O. F. Schirmer, “Optical Absorption of Small Polarons Bound in Octahedral
Symmetry: V− Type Centers in Alkaline Earth Oxides,” Zeitschrift für Physik
B, vol. 24, no. 3, pp. 235–244, September 1976.

106. H. Katsui, S. Nagata, B. Tsuchiya, M. Zhao, and T. Shikama, “Damage and
deuterium retention in LiAlO2 single crystals irradiated with deuterium ions
using ion-beam techniques and optical absorption measurements,” Journal of
Nuclear Materials, vol. 417, no. 1-3, pp. 753–755, October 2011.

107. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
section 10.2.

108. ——, Electron Paramagnetic Resonance: Elementary Theory and Practical Ap-
plications, 2nd ed. John Wiley & Sons, Inc, 2007, p. 307.

109. G. F. Foster and H. Statz, “Method of Treating Zeeman Splittings of Paramag-
netic Ions in Crystalline Fields,” Physical Review, vol. 113, no. 2, pp. 445–454,
January 1959.

110. B. Bleaney, “The Spin Hamiltonian of a Γ8 Quartet,” Proceedings of the Physical
Society, vol. 73, no. 6, pp. 939–942, June 1959.

111. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary
Theory and Practical Applications, 2nd ed. John Wiley & Sons, Inc, 2007,
section 6.7.

112. F. S. Ham, G. W. Ludwig, G. D. Watkins, and H. H. Woodbury, “Spin Hamil-
tonian of Co2+,” Physical Review Letters, vol. 5, no. 10, pp. 468–470, November
1960.

113. W. C. Holton, J. Schneider, and T. L. Estle, “Electron Paramagnetic Resonance
of Photosensitive Iron Transition Group Impurities in ZnS and ZnO,” Physical
Review, vol. 133, no. 6A, pp. 1638–1641, March 1964.

114. A. K. Garrison, “Electron Paramagnetic Resonance of NaF:Fe+,” Materials Re-
search Bulletin, vol. 2, no. 2, pp. 155–164, February 1967.

115. U. Kaufmann, “EPR and optical absorption of Fe+, Fe2+, Fe3+, and Fe4+ on
tetragonal sites in CdSiP2,” Physical Review B, vol. 14, no. 5, pp. 1848–1857,
September 1976.

116. J. M. Baker, A. A. Jenkins, and R. C. C. Ward, “Electron paramagnetic reso-
nance in lithium oxide from a centre containing Fe3+,” Journal of the Physics:
Condensed Matter, vol. 3, no. 43, pp. 8467–8477, October 1991.

125



117. UC Davis Chem Wiki. (2015) Hund’s rules. [Online]. Avail-
able: http://chemwiki.ucdavis.edu/Inorganic Chemistry/Electronic
Configurations/Hund%27s Rules

118. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition
Ions. Oxford University Press, 1970, section 3.14.

119. E. Malguth, A. Hoffmann, W. Gehlhoff, O. Gelhausen, M. R. Phillips, and
X. Xu, “Structural and electronic properties of Fe3+ and Fe2+ centers in GaN
from optical and EPR experiments,” Physical Review B, vol. 74, no. 16, p.
165202, October 2006.

120. J. L. Dean, Ed., Lange’s Handbook of Chemistry, 14th ed. McGraw Hill, LoCo,
1992, table 4.6.
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